Раздел 3.5
1. D’Ambrosio L. et al. Doxorubicin plus dacarbazine, doxorubicin plus ifosfamide, or doxorubicin alone as a first-line treatment for advanced leiomyosarcoma: A propensity score matching analysis from the European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group. // Cancer. 2020. Vol. 126, № 11. P. 2637–2647.
2. Antman K. et al. An intergroup phase III randomized study of doxorubicin and dacarbazine with or without ifosfamide and mesna in advanced soft tissue and bone sarcomas. // J Clin Oncol. 1993. Vol. 11, № 7. P. 1276–1285.
3. Santoro A. et al. Doxorubicin versus CYVADIC versus doxorubicin plus ifosfamide in first-line treatment of advanced soft tissue sarcomas: a randomized study of the European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group. // J Clin Oncol. 1995. Vol. 13, № 7. P. 1537–1545.
4. Edmonson J.H. et al. Randomized comparison of doxorubicin alone versus ifosfamide plus doxorubicin or mitomycin, doxorubicin, and cisplatin against advanced soft tissue sarcomas. // J Clin Oncol. 1993. Vol. 11, № 7. P. 1269–1275.
5. Borden E.C. et al. Randomized comparison of three adriamycin regimens for metastatic soft tissue sarcomas. // J Clin Oncol. 1987. Vol. 5, № 6. P. 840–850.
6. Omura G.A. et al. A randomized study of adriamycin with and without dimethyl triazenoimidazole carboxamide in advanced uterine sarcomas. // Cancer. 1983. Vol. 52, № 4. P. 626–632.
7. Palumbo R. et al. Dose-intensive first-line chemotherapy with epirubicin and continuous infusion ifosfamide in adult patients with advanced soft tissue sarcomas: a phase II study. // Eur J Cancer. 1999. Vol. 35, № 1. P. 66–72.
8. Tap W.D. et al. Olaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: an open-label phase 1b and randomised phase 2 trial. // Lancet. 2016. Vol. 388, № 10043. P. 488–497.
9. Seddon B. et al. Gemcitabine and docetaxel versus doxorubicin as first-line treatment in previously untreated advanced unresectable or metastatic soft-tissue sarcomas (GeDDiS): a randomised controlled phase 3 trial. // Lancet Oncol. 2017. Vol. 18, № 10. P. 1397–1410.
10. Maki R.G. et al. Randomized phase II study of gemcitabine and docetaxel compared with gemcitabine alone in patients with metastatic soft tissue sarcomas: results of sarcoma alliance for research through collaboration study 002 [corrected]. // J Clin Oncol. 2007. Vol. 25, № 19. P. 2755–2763.
11. Merimsky O. et al. Gemcitabine in soft tissue or bone sarcoma resistant to standard chemotherapy: a phase II study. // Cancer Chemother Pharmacol. 2000. Vol. 45, № 2. P. 177–181.
12. Patel S.R. et al. Phase II clinical investigation of gemcitabine in advanced soft tissue sarcomas and window evaluation of dose rate on gemcitabine triphosphate accumulation. // J Clin Oncol. 2001. Vol. 19, № 15. P. 3483–3489.
13. Pautier P. et al. Randomized multicenter and stratified phase II study of gemcitabine alone versus gemcitabine and docetaxel in patients with metastatic or relapsed leiomyosarcomas: a Federation Nationale des Centres de Lutte Contre le Cancer (FNCLCC) French Sarcoma Group Study (TAXOGEM study). // Oncologist. 2012. Vol. 17, № 9. P. 1213–1220.
14. Grünwald V. et al. Randomized Comparison of Pazopanib and Doxorubicin as First-Line Treatment in Patients With Metastatic Soft Tissue Sarcoma Age 60 Years or Older: Results of a German Intergroup Study. // J Clin Oncol. 2020. Vol. 38, № 30. P. 3555–3564.
15. Sleijfer S. et al. Pazopanib, a multikinase angiogenesis inhibitor, in patients with relapsed or refractory advanced soft tissue sarcoma: a phase II study from the European organisation for research and treatment of cancer-soft tissue and bone sarcoma group (EORTC study 62043). // J Clin Oncol. 2009. Vol. 27, № 19. P. 3126–3132.
16. Hamacher R. et al. A post hoc analysis of the EPAZ trial: The role of geriatric variables in elderly soft tissue sarcoma patients on toxicity and outcome. // Eur J Cancer. 2023. Vol. 181. P. 145–154.
17. Urakawa H. et al. Phase II trial of pazopanib in patients with metastatic or unresectable chemoresistant sarcomas: A Japanese Musculoskeletal Oncology Group study // Cancer Sci. 2020. Vol. 111, № 9. P. 3303–3312.
18. Rosen G. et al. Synovial sarcoma. Uniform response of metastases to high dose ifosfamide. // Cancer. 1994. Vol. 73, № 10. P. 2506–2511.
19. Salah S. et al. Factors influencing survival in metastatic synovial sarcoma: importance of patterns of metastases and the first-line chemotherapy regimen. // Med Oncol. 2013. Vol. 30, № 3. P. 639.
20. Judson I. et al. Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: a randomised controlled phase 3 trial. // Lancet Oncol. 2014. Vol. 15, № 4. P. 415–423.
21. Vlenterie M. et al. Outcome of chemotherapy in advanced synovial sarcoma patients: Review of 15 clinical trials from the European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group; setting a new landmark for studies in this entity. // Eur J Cancer. 2016. Vol. 58. P. 62–72.
22. Sobczuk P. et al. Systemic Treatment for Advanced and Metastatic Malignant Peripheral Nerve Sheath Tumors-A Sarcoma Reference Center Experience. // J Clin Med. 2020. Vol. 9, № 10.
23. Sleijfer S. et al. Prognostic and predictive factors for outcome to first-line ifosfamide-containing chemotherapy for adult patients with advanced soft tissue sarcomas: an exploratory, retrospective analysis on large series from the European Organization for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group (EORTC-STBSG). // Eur J Cancer. 2010. Vol. 46, № 1. P. 72–83.
24. Pautier P. et al. Doxorubicin alone versus doxorubicin with trabectedin followed by trabectedin alone as first-line therapy for metastatic or unresectable leiomyosarcoma (LMS-04): a randomised, multicentre, open-label phase 3 trial. // Lancet Oncol. 2022. Vol. 23, № 8. P. 1044–1054.
25. Martin-Broto J. et al. Randomized Phase II Study of Trabectedin and Doxorubicin Compared With Doxorubicin Alone as First-Line Treatment in Patients With Advanced Soft Tissue Sarcomas: A Spanish Group for Research on Sarcoma Study. // J Clin Oncol. 2016. Vol. 34, № 19. P. 2294–2302.
26. Pautier P. et al. Doxorubicin–Trabectedin with Trabectedin Maintenance in Leiomyosarcoma // New England Journal of Medicine. 2024. Vol. 391, № 9. P. 789–799.
27. Bay J.-O. et al. Docetaxel and gemcitabine combination in 133 advanced soft-tissue sarcomas: a retrospective analysis. // Int J Cancer. 2006. Vol. 119, № 3. P. 706–711.
28. Hensley M.L. et al. Gemcitabine and docetaxel in patients with unresectable leiomyosarcoma: results of a phase II trial. // J Clin Oncol. 2002. Vol. 20, № 12. P. 2824–2831.
29. Leu K.M. et al. Laboratory and clinical evidence of synergistic cytotoxicity of sequential treatment with gemcitabine followed by docetaxel in the treatment of sarcoma. // J Clin Oncol. 2004. Vol. 22, № 9. P. 1706–1712.
30. Anderson S.E. et al. A retrospective analysis of vinorelbine chemotherapy for patients with previously treated soft-tissue sarcomas. // Sarcoma. 2006. Vol. 2006. P. 15947.
31. Tariq Z. et al. A case report of complete remission of pulmonary metastases from epithelioid sarcoma to navelbine chemotherapy. // Am J Ther. 2012. Vol. 19, № 2. P. e95-7.
32. Frezza A.M. et al. Anthracycline, Gemcitabine, and Pazopanib in Epithelioid Sarcoma: A Multi-institutional Case Series. // JAMA Oncol. 2018. Vol. 4, № 9. P. e180219.
33. Jones R.L. et al. Role of palliative chemotherapy in advanced epithelioid sarcoma. // Am J Clin Oncol. 2012. Vol. 35, № 4. P. 351–357.
34. Gounder M.M. et al. Real-world outcomes of patients with locally advanced or metastatic epithelioid sarcoma. // Cancer. 2021. Vol. 127, № 8. P. 1311–1317.
35. Pink D. et al. Gemcitabine and docetaxel for epithelioid sarcoma: results from a retrospective, multi-institutional analysis. // Oncology. 2014. Vol. 87, № 2. P. 95–103.
36. Gounder M. et al. Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: an international, open-label, phase 2 basket study. // Lancet Oncol. 2020. Vol. 21, № 11. P. 1423–1432.
37. Touati N. et al. European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group Experience with Advanced/Metastatic Epithelioid Sarcoma Patients Treated in Prospective Trials: Clinical Profile and Response to Systemic Therapy. // Clin Oncol (R Coll Radiol). 2018. Vol. 30, № 7. P. 448–454.
38. Mullins B., Hackman T. Angiosarcoma of the Head and Neck // Int Arch Otorhinolaryngol. 2015. Vol. 19, № 03. P. 191–195.
39. Verweij J. et al. Randomized phase II study of docetaxel versus doxorubicin in first- and second-line chemotherapy for locally advanced or metastatic soft tissue sarcomas in adults: a study of the european organization for research and treatment of cancer soft tissue and bone sarcoma group. // J Clin Oncol. 2000. Vol. 18, № 10. P. 2081–2086.
40. Linfeng Q. et al. Cardiac angiosarcoma: A case report and review of current treatment. // Medicine. 2019. Vol. 98, № 49. P. e18193.
41. Young R.J. et al. First-line anthracycline-based chemotherapy for angiosarcoma and other soft tissue sarcoma subtypes: pooled analysis of eleven European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group trials. // Eur J Cancer. 2014. Vol. 50, № 18. P. 3178–3186.
42. Italiano A. et al. Comparison of doxorubicin and weekly paclitaxel efficacy in metastatic angiosarcomas. // Cancer. 2012. Vol. 118, № 13. P. 3330–3336.
43. Skubitz K.M., Haddad P.A. Paclitaxel and pegylated-liposomal doxorubicin are both active in angiosarcoma. // Cancer. 2005. Vol. 104, № 2. P. 361–366.
44. Wollina U. et al. Cutaneous angiosarcoma is a rare aggressive malignant vascular tumour of the skin. // J Eur Acad Dermatol Venereol. 2011. Vol. 25, № 8. P. 964–968.
45. Eiling S. et al. Complete remission of a radio-resistant cutaneous angiosarcoma of the scalp by systemic treatment with liposomal doxorubicin. // Br J Dermatol. 2002. Vol. 147, № 1. P. 150–153.
46. Fury M.G. et al. A 14-year retrospective review of angiosarcoma: clinical characteristics, prognostic factors, and treatment outcomes with surgery and chemotherapy. // Cancer J. 2005. Vol. 11, № 3. P. 241–247.
47. Penel N. et al. Phase II trial of weekly paclitaxel for unresectable angiosarcoma: the ANGIOTAX Study. // J Clin Oncol. 2008. Vol. 26, № 32. P. 5269–5274.
48. Fata F. et al. Paclitaxel in the treatment of patients with angiosarcoma of the scalp or face. // Cancer. 1999. Vol. 86, № 10. P. 2034–2037.
49. Schlemmer M. et al. Paclitaxel in patients with advanced angiosarcomas of soft tissue: a retrospective study of the EORTC soft tissue and bone sarcoma group. // Eur J Cancer. 2008. Vol. 44, № 16. P. 2433–2436.
50. Stacchiotti S. et al. Gemcitabine in advanced angiosarcoma: a retrospective case series analysis from the Italian Rare Cancer Network. // Ann Oncol. 2012. Vol. 23, № 2. P. 501–508.
51. Sanfilippo R. et al. Role of Chemotherapy, VEGFR Inhibitors, and mTOR Inhibitors in Advanced Perivascular Epithelioid Cell Tumors (PEComas). // Clin Cancer Res. 2019. Vol. 25, № 17. P. 5295–5300.
52. Wagner A.J. et al. nab-Sirolimus for Patients With Malignant Perivascular Epithelioid Cell Tumors. // J Clin Oncol. 2021. Vol. 39, № 33. P. 3660–3670.
53. Gennatas C. et al. Successful treatment with the mTOR inhibitor everolimus in a patient with perivascular epithelioid cell tumor. // World J Surg Oncol. 2012. Vol. 10. P. 181.
54. Wagner A.J. et al. Clinical activity of mTOR inhibition with sirolimus in malignant perivascular epithelioid cell tumors: targeting the pathogenic activation of mTORC1 in tumors. // J Clin Oncol. 2010. Vol. 28, № 5. P. 835–840.
55. Reichardt P. et al. Chemotherapy in alveolar soft part sarcomas. What do we know? // Eur J Cancer. 2003. Vol. 39, № 11. P. 1511–1516.
56. Wang H. et al. Prognostic factors in alveolar soft part sarcoma: A SEER analysis. // J Surg Oncol. 2016. Vol. 113, № 5. P. 581–586.
57. O’Sullivan B. et al. Preoperative versus postoperative radiotherapy in soft-tissue sarcoma of the limbs: a randomised trial. // Lancet. 2002. Vol. 359, № 9325. P. 2235–2241.
58. Kummar S. et al. Cediranib for metastatic alveolar soft part sarcoma. // J Clin Oncol. 2013. Vol. 31, № 18. P. 2296–2302.
59. Chen A.P. et al. Atezolizumab for Advanced Alveolar Soft Part Sarcoma. // N Engl J Med. 2023. Vol. 389, № 10. P. 911–921.
60. Blay J.-Y. et al. Pembrolizumab in patients with rare and ultra-rare sarcomas (AcSé Pembrolizumab): analysis of a subgroup from a non-randomised, open-label, phase 2, basket trial. // Lancet Oncol. 2023. Vol. 24, № 8. P. 892–902.
61. Groisberg R. et al. Characteristics and outcomes of patients with advanced sarcoma enrolled in early phase immunotherapy trials. // J Immunother Cancer. 2017. Vol. 5, № 1. P. 100.
62. Wilky B.A. et al. Axitinib plus pembrolizumab in patients with advanced sarcomas including alveolar soft-part sarcoma: a single-centre, single-arm, phase 2 trial. // Lancet Oncol. 2019. Vol. 20, № 6. P. 837–848.
63. Stacchiotti S. et al. Activity of Pazopanib and Trabectedin in Advanced Alveolar Soft Part Sarcoma. // Oncologist. 2018. Vol. 23, № 1. P. 62–70.
64. Kim M. et al. A Phase II Trial of Pazopanib in Patients with Metastatic Alveolar Soft Part Sarcoma. // Oncologist. 2019. Vol. 24, № 1. P. 20-e29.
65. Li T. et al. A retrospective analysis of 14 consecutive Chinese patients with unresectable or metastatic alveolar soft part sarcoma treated with sunitinib. // Invest New Drugs. 2016. Vol. 34, № 6. P. 701–706.
66. Jagodzińska-Mucha P. et al. Long-term results of therapy with sunitinib in metastatic alveolar soft part sarcoma. // Tumori. 2017. Vol. 103, № 3. P. 231–235.
67. Nguyen J. et al. Randomized Phase II Trial of Sunitinib or Cediranib in Alveolar Soft Part Sarcoma. // Clin Cancer Res. 2023. Vol. 29, № 7. P. 1200–1208.
68. Chi Y. et al. Safety and Efficacy of Anlotinib, a Multikinase Angiogenesis Inhibitor, in Patients with Refractory Metastatic Soft-Tissue Sarcoma. // Clin Cancer Res. 2018. Vol. 24, № 21. P. 5233–5238.
69. Schöffski P. et al. Activity and safety of crizotinib in patients with alveolar soft part sarcoma with rearrangement of TFE3: European Organization for Research and Treatment of Cancer (EORTC) phase II trial 90101 “CREATE”. // Ann Oncol. 2018. Vol. 29, № 3. P. 758–765.
70. Schuetze S.M. et al. Phase 2 study of dasatinib in patients with alveolar soft part sarcoma, chondrosarcoma, chordoma, epithelioid sarcoma, or solitary fibrous tumor. // Cancer. 2017. Vol. 123, № 1. P. 90–97.
71. Clark M.A. et al. Clear cell sarcoma (melanoma of soft parts): The Royal Marsden Hospital experience. // Eur J Surg Oncol. 2008. Vol. 34, № 7. P. 800–804.
72. Jones R.L. et al. Chemotherapy in clear cell sarcoma. // Med Oncol. 2011. Vol. 28, № 3. P. 859–863.
73. Smrke A. et al. Systemic treatment of advanced clear cell sarcoma: results from a retrospective international series from the World Sarcoma Network. // ESMO Open. 2022. Vol. 7, № 3. P. 100522.
74. Schöffski P. et al. Activity and safety of crizotinib in patients with advanced clear-cell sarcoma with MET alterations: European Organization for Research and Treatment of Cancer phase II trial 90101 “CREATE”. // Ann Oncol. 2019. Vol. 30, № 2. P. 344.
75. Chuk M.K. et al. A phase 1 study of cabozantinib in children and adolescents with recurrent or refractory solid tumors, including CNS tumors: Trial ADVL1211, a report from the Children’s Oncology Group. // Pediatr Blood Cancer. 2018. Vol. 65, № 8. P. e27077.
76. Wagner A.J. et al. Tivantinib (ARQ 197), a selective inhibitor of MET, in patients with microphthalmia transcription factor-associated tumors: results of a multicenter phase 2 trial. // Cancer. 2012. Vol. 118, № 23. P. 5894–5902.
77. Stacchiotti S. et al. Tumor response to sunitinib malate observed in clear-cell sarcoma. // Ann Oncol. 2010. Vol. 21, № 5. P. 1130–1131.
78. Semenisty V. et al. Pazopanib for metastatic pulmonary epithelioid hemangioendothelioma-a suitable treatment option: case report and review of anti-angiogenic treatment options. // BMC Cancer. 2015. Vol. 15. P. 402.
79. Bally O. et al. Eight years tumor control with pazopanib for a metastatic resistant epithelioid hemangioendothelioma. // Clin Sarcoma Res. 2015. Vol. 5. P. 12.
80. Kollár A. et al. Pazopanib in advanced vascular sarcomas: an EORTC Soft Tissue and Bone Sarcoma Group (STBSG) retrospective analysis. // Acta Oncol. 2017. Vol. 56, № 1. P. 88–92.
81. Yousaf N. et al. Systemic treatment options for epithelioid haemangioendothelioma: the Royal Marsden Hospital experience. // Anticancer Res. 2015. Vol. 35, № 1. P. 473–480.
82. Pranteda G. et al. The management of pseudomyogenic hemangioendothelioma of the foot: A case report and review of the literature. // Dermatol Ther. 2018. Vol. 31, № 6. P. e12725.
83. Pinet C. et al. Aggressive form of pleural epithelioid haemangioendothelioma: complete response after chemotherapy. // Eur Respir J. 1999. Vol. 14, № 1. P. 237–238.
84. Kanemura S. et al. Pemetrexed for epithelioid haemangioendothelioma of the pleura. // Respirol Case Rep. 2016. Vol. 4, № 6. P. e00191.
85. Frezza A.M. et al. Systemic therapies in advanced epithelioid haemangioendothelioma: A retrospective international case series from the World Sarcoma Network and a review of literature. // Cancer Med. 2021. Vol. 10, № 8. P. 2645–2659.
86. Lakkis Z. et al. Metronomic cyclophosphamide: an alternative treatment for hepatic epithelioid hemangioendothelioma. // J Hepatol. 2013. Vol. 58, № 6. P. 1254–1257.
87. Chevreau C. et al. Sorafenib in patients with progressive epithelioid hemangioendothelioma: a phase 2 study by the French Sarcoma Group (GSF/GETO). // Cancer. 2013. Vol. 119, № 14. P. 2639–2644.
88. Agulnik M. et al. An open-label, multicenter, phase II study of bevacizumab for the treatment of angiosarcoma and epithelioid hemangioendotheliomas. // Ann Oncol. 2013. Vol. 24, № 1. P. 257–263.
89. Schuetze S.M. et al. A Single Arm Phase 2 Trial of Trametinib in Patients With Locally Advanced or Metastatic Epithelioid Hemangioendothelioma. // Clin Cancer Res. 2024.
90. Stacchiotti S. et al. Activity of sirolimus in patients with progressive epithelioid hemangioendothelioma: A case-series analysis within the Italian Rare Cancer Network. // Cancer. 2021. Vol. 127, № 4. P. 569–576.
91. Stacchiotti S. et al. Sirolimus in Advanced Epithelioid Hemangioendothelioma: A Retrospective Case-Series Analysis from the Italian Rare Cancer Network Database. // Ann Surg Oncol. 2016. Vol. 23, № 9. P. 2735–2744.
92. Sumrall A. et al. Lenalidomide stops progression of multifocal epithelioid hemangioendothelioma including intracranial disease. // J Neurooncol. 2010. Vol. 97, № 2. P. 275–277.
93. Bishop A.J. et al. Extraskeletal Myxoid Chondrosarcomas: Combined Modality Therapy With Both Radiation and Surgery Improves Local Control. // Am J Clin Oncol. 2019. Vol. 42, № 10. P. 744–748.
94. Stacchiotti S. et al. Activity of sunitinib in extraskeletal myxoid chondrosarcoma. // Eur J Cancer. 2014. Vol. 50, № 9. P. 1657–1664.
95. Stacchiotti S. et al. Pazopanib for treatment of advanced extraskeletal myxoid chondrosarcoma: a multicentre, single-arm, phase 2 trial. // Lancet Oncol. 2019. Vol. 20, № 9. P. 1252–1262.
96. Drilon A.D. et al. Extraskeletal myxoid chondrosarcoma: a retrospective review from 2 referral centers emphasizing long-term outcomes with surgery and chemotherapy. // Cancer. 2008. Vol. 113, № 12. P. 3364–3371.
97. Stacchiotti S. et al. Anthracycline-based chemotherapy in extraskeletal myxoid chondrosarcoma: a retrospective study. // Clin Sarcoma Res. 2013. Vol. 3, № 1. P. 16.
98. Butrynski J.E. et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. // N Engl J Med. 2010. Vol. 363, № 18. P. 1727–1733.
99. Schöffski P. et al. Crizotinib in patients with advanced, inoperable inflammatory myofibroblastic tumours with and without anaplastic lymphoma kinase gene alterations (European Organisation for Research and Treatment of Cancer 90101 CREATE): a multicentre, single-drug, prospective, non-randomised phase 2 trial. // Lancet Respir Med. 2018. Vol. 6, № 6. P. 431–441.
100. Mansfield A.S. et al. Chromoplectic TPM3-ALK rearrangement in a patient with inflammatory myofibroblastic tumor who responded to ceritinib after progression on crizotinib. // Ann Oncol. 2016. Vol. 27, № 11. P. 2111–2117.
101. Michels S.Y.F. et al. ALKG1269A mutation as a potential mechanism of acquired resistance to crizotinib in an ALK-rearranged inflammatory myofibroblastic tumor. // NPJ Precis Oncol. 2017. Vol. 1, № 1. P. 4.
102. Xu X. et al. ALK-G1269A mutation in epithelioid inflammatory myofibroblastic sarcoma after progression on crizotinib: A case report. // Oncol Lett. 2019. Vol. 17, № 2. P. 2370–2376.
103. Wong H.H. et al. Lorlatinib for the treatment of inflammatory myofibroblastic tumour with TPM4-ALK fusion following failure of entrectinib. // Anticancer Drugs. 2020. Vol. 31, № 10. P. 1106–1110.
104. Wang Z. et al. Durable Clinical Response to ALK Tyrosine Kinase Inhibitors in Epithelioid Inflammatory Myofibroblastic Sarcoma Harboring PRRC2B-ALK Rearrangement: A Case Report. // Front Oncol. 2022. Vol. 12. P. 761558.
105. Ingley K.M. et al. Durable response to serial tyrosine kinase inhibitors (TKIs) in an adolescent with metastatic TFG-ROS1 fusion positive Inflammatory Myofibroblastic Tumor (IMT). // Lung Cancer. 2021. Vol. 158. P. 151–155.
106. Reinhart S. et al. Inflammatory Myofibroblastic Tumor of the Bladder With FN1-ALK Gene Fusion: Different Response to ALK Inhibition. // Urology. 2020. Vol. 146. P. 32–35.
107. Doebele R.C. et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. // Lancet Oncol. 2020. Vol. 21, № 2. P. 271–282.
108. Drilon A. et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. // N Engl J Med. 2018. Vol. 378, № 8. P. 731–739.
109. Kusunoki-Nakamoto F. et al. Successful treatment of an unresectable inflammatory myofibroblastic tumor of the frontal bone using a cyclooxygenase-2 inhibitor and methotrexate. // Intern Med. 2013. Vol. 52, № 5. P. 623–628.
110. Grünholz D. et al. [Peritoneal myofibroblastic tumor successfully treated with infliximab: Report of one case]. // Rev Med Chil. 2015. Vol. 143, № 7. P. 943–947.
111. Ehrenstein V. et al. Tenosynovial Giant Cell Tumor: Incidence, Prevalence, Patient Characteristics, and Recurrence. A Registry-based Cohort Study in Denmark. // J Rheumatol. 2017. Vol. 44, № 10. P. 1476–1483.
112. Hamlin B.R. et al. Total knee arthroplasty in patients who have pigmented villonodular synovitis. // J Bone Joint Surg Am. 1998. Vol. 80, № 1. P. 76–82.
113. Mollon B. et al. The effect of surgical synovectomy and radiotherapy on the rate of recurrence of pigmented villonodular synovitis of the knee: an individual patient meta-analysis. // Bone Joint J. 2015. Vol. 97-B, № 4. P. 550–557.
114. Blanco C.E., Leon H.O., Guthrie T.B. Combined partial arthroscopic synovectomy and radiation therapy for diffuse pigmented villonodular synovitis of the knee. // Arthroscopy. 2001. Vol. 17, № 5. P. 527–531.
115. Horoschak M. et al. External beam radiation therapy enhances local control in pigmented villonodular synovitis. // Int J Radiat Oncol Biol Phys. 2009. Vol. 75, № 1. P. 183–187.
116. Chin K.R. et al. Treatment of advanced primary and recurrent diffuse pigmented villonodular synovitis of the knee. // J Bone Joint Surg Am. 2002. Vol. 84, № 12. P. 2192–2202.
117. Shabat S. et al. The use of surgery and yttrium 90 in the management of extensive and diffuse pigmented villonodular synovitis of large joints. // Rheumatology (Oxford). 2002. Vol. 41, № 10. P. 1113–1118.
118. Franssen M.J. et al. Treatment of pigmented villonodular synovitis of the knee with yttrium-90 silicate: prospective evaluations by arthroscopy, histology, and 99mTc pertechnetate uptake measurements. // Ann Rheum Dis. 1989. Vol. 48, № 12. P. 1007–1013.
119. Tap W.D. et al. Pexidartinib versus placebo for advanced tenosynovial giant cell tumour (ENLIVEN): a randomised phase 3 trial. // Lancet. 2019. Vol. 394, № 10197. P. 478–487.
120. West R.B. et al. A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells. // Proc Natl Acad Sci U S A. 2006. Vol. 103, № 3. P. 690–695.
121. Lewis J.H. et al. Pexidartinib Long-Term Hepatic Safety Profile in Patients with Tenosynovial Giant Cell Tumors. // Oncologist. 2021. Vol. 26, № 5. P. e863–e873.
122. Gelderblom H. et al. Vimseltinib versus placebo for tenosynovial giant cell tumour (MOTION): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. // Lancet. 2024. Vol. 403, № 10445. P. 2709–2719.
123. Cassier P.A. et al. Efficacy of imatinib mesylate for the treatment of locally advanced and/or metastatic tenosynovial giant cell tumor/pigmented villonodular synovitis. // Cancer. 2012. Vol. 118, № 6. P. 1649–1655.
124. Blay J.-Y. et al. Complete response to imatinib in relapsing pigmented villonodular synovitis/tenosynovial giant cell tumor (PVNS/TGCT). // Ann Oncol. 2008. Vol. 19, № 4. P. 821–822.
125. Gelderblom H. et al. Nilotinib in locally advanced pigmented villonodular synovitis: a multicentre, open-label, single-arm, phase 2 trial. // Lancet Oncol. 2018. Vol. 19, № 5. P. 639–648.
126. Cassier P.A. et al. CSF1R inhibition with emactuzumab in locally advanced diffuse-type tenosynovial giant cell tumours of the soft tissue: a dose-escalation and dose-expansion phase 1 study. // Lancet Oncol. 2015. Vol. 16, № 8. P. 949–956.
127. Cassier P.A. et al. Long-term clinical activity, safety and patient-reported quality of life for emactuzumab-treated patients with diffuse-type tenosynovial giant-cell tumour. // Eur J Cancer. 2020. Vol. 141. P. 162–170.
128. Mavili M.E., Gursu K.G., Gokoz A. Dermatofibrosarcoma with lymph node involvement. // Ann Plast Surg. 1994. Vol. 32, № 4. P. 438–440.
129. Lal P. et al. Dermatofibrosarcoma protuberans metastasizing to lymph nodes: a case report and review of literature. // J Surg Oncol. 1999. Vol. 72, № 3. P. 178–180.
130. Connelly J.H., Evans H.L. Dermatofibrosarcoma protuberans. A clinicopathologic review with emphasis on fibrosarcomatous areas. // Am J Surg Pathol. 1992. Vol. 16, № 10. P. 921–925.
131. Kerob D. et al. Value of cytogenetic analysis in the treatment of dermatofibrosarcoma protuberans. // J Clin Oncol. 2008. Vol. 26, № 10. P. 1757–1759.
132. McArthur G.A. et al. Molecular and clinical analysis of locally advanced dermatofibrosarcoma protuberans treated with imatinib: Imatinib Target Exploration Consortium Study B2225. // J Clin Oncol. 2005. Vol. 23, № 4. P. 866–873.
133. Stacchiotti S. et al. Efficacy and Biological Activity of Imatinib in Metastatic Dermatofibrosarcoma Protuberans (DFSP). // Clin Cancer Res. 2016. Vol. 22, № 4. P. 837–846.
134. Kamar F.G., Kairouz V.F., Sabri A.N. Dermatofibrosarcoma protuberans (DFSP) successfully treated with sorafenib: case report. // Clin Sarcoma Res. 2013. Vol. 3, № 1. P. 5.
135. Ballo M.T. et al. The role of radiation therapy in the management of dermatofibrosarcoma protuberans. // Int J Radiat Oncol Biol Phys. 1998. Vol. 40, № 4. P. 823–827.
136. Ng A. et al. Chemosensitivity in pediatric dermatofibrosarcoma protuberans. // J Pediatr Hematol Oncol. 2005. Vol. 27, № 2. P. 100–102.
137. Bertagnolli M.M. et al. Multimodality treatment of mesenteric desmoid tumours. // Eur J Cancer. 2008. Vol. 44, № 16. P. 2404–2410.
138. Lev D. et al. Optimizing treatment of desmoid tumors. // J Clin Oncol. 2007. Vol. 25, № 13. P. 1785–1791.
139. Järvinen H.J. Desmoid disease as a part of familial adenomatous polyposis coli. // Acta Chir Scand. 1987. Vol. 153, № 5–6. P. 379–383.
140. Hansmann A. et al. High-dose tamoxifen and sulindac as first-line treatment for desmoid tumors. // Cancer. 2004. Vol. 100, № 3. P. 612–620.
141. Kummar S. et al. Clinical Activity of the γ-Secretase Inhibitor PF-03084014 in Adults With Desmoid Tumors (Aggressive Fibromatosis). // J Clin Oncol. 2017. Vol. 35, № 14. P. 1561–1569.
142. Gounder M. et al. Nirogacestat, a γ-Secretase Inhibitor for Desmoid Tumors. // N Engl J Med. 2023. Vol. 388, № 10. P. 898–912.
143. Gounder M.M. et al. Activity of Sorafenib against desmoid tumor/deep fibromatosis. // Clin Cancer Res. 2011. Vol. 17, № 12. P. 4082–4090.
144. Gounder M.M. et al. Sorafenib for Advanced and Refractory Desmoid Tumors. // N Engl J Med. 2018. Vol. 379, № 25. P. 2417–2428.
145. Szucs Z. et al. Pazopanib, a promising option for the treatment of aggressive fibromatosis. // Anticancer Drugs. 2017. Vol. 28, № 4. P. 421–426.
146. Toulmonde M. et al. Pazopanib or methotrexate-vinblastine combination chemotherapy in adult patients with progressive desmoid tumours (DESMOPAZ): a non-comparative, randomised, open-label, multicentre, phase 2 study. // Lancet Oncol. 2019. Vol. 20, № 9. P. 1263–1272.
147. George S. et al. Multicenter phase II trial of sunitinib in the treatment of nongastrointestinal stromal tumor sarcomas. // J Clin Oncol. 2009. Vol. 27, № 19. P. 3154–3160.
148. Signoroni S. et al. Cyclooxygenase-2 and platelet-derived growth factor receptors as potential targets in treating aggressive fibromatosis. // Clin Cancer Res. 2007. Vol. 13, № 17. P. 5034–5040.
149. Kinzbrunner B. et al. Remission of rapidly growing desmoid tumors after tamoxifen therapy. // Cancer. 1983. Vol. 52, № 12. P. 2201–2204.
150. Deyrup A.T., Tretiakova M., Montag A.G. Estrogen receptor-beta expression in extraabdominal fibromatoses: an analysis of 40 cases. // Cancer. 2006. Vol. 106, № 1. P. 208–213.
151. Rock M.G. et al. Extra-abdominal desmoid tumors. // J Bone Joint Surg Am. 1984. Vol. 66, № 9. P. 1369–1374.
152. Brooks M.D. et al. Desmoid tumours treated with triphenylethylenes. // Eur J Cancer. 1992. Vol. 28A, № 6–7. P. 1014–1018.
153. Fiore M. et al. Hormonal manipulation with toremifene in sporadic desmoid-type fibromatosis. // Eur J Cancer. 2015. Vol. 51, № 18. P. 2800–2807.
154. Tonelli F. et al. Treatment of desmoids and mesenteric fibromatosis in familial adenomatous polyposis with raloxifene. // Tumori. 2003. Vol. 89, № 4. P. 391–396.
155. Wilcken N., Tattersall M.H. Endocrine therapy for desmoid tumors. // Cancer. 1991. Vol. 68, № 6. P. 1384–1388.
156. Bauernhofer T. et al. Sequential treatment of recurrent mesenteric desmoid tumor. // Cancer. 1996. Vol. 77, № 6. P. 1061–1065.
157. Waddell W.R., Kirsch W.M. Testolactone, sulindac, warfarin, and vitamin K1 for unresectable desmoid tumors. // Am J Surg. 1991. Vol. 161, № 4. P. 416–421.
158. Tsukada K. et al. Noncytotoxic drug therapy for intra-abdominal desmoid tumor in patients with familial adenomatous polyposis. // Dis Colon Rectum. 1992. Vol. 35, № 1. P. 29–33.
159. Patel S.R., Benjamin R.S. Desmoid tumors respond to chemotherapy: defying the dogma in oncology. // J Clin Oncol. 2006. Vol. 24, № 1. P. 11–12.
160. Janinis J. et al. The pharmacological treatment of aggressive fibromatosis: a systematic review. // Ann Oncol. 2003. Vol. 14, № 2. P. 181–190.
161. Seiter K., Kemeny N. Successful treatment of a desmoid tumor with doxorubicin. // Cancer. 1993. Vol. 71, № 7. P. 2242–2244.
162. Lynch H.T. et al. Use of doxorubicin and dacarbazine for the management of unresectable intra-abdominal desmoid tumors in Gardner’s syndrome. // Dis Colon Rectum. 1994. Vol. 37, № 3. P. 260–267.
163. Patel S.R., Evans H.L., Benjamin R.S. Combination chemotherapy in adult desmoid tumors. // Cancer. 1993. Vol. 72, № 11. P. 3244–3247.
164. Yamamoto H. et al. Low-dose dacarbazine-doxorubicin therapy against intra-abdominal desmoid tumors. // Oncol Rep. 2013. Vol. 29, № 5. P. 1751–1755.
165. Reich S. et al. Low-dose chemotherapy with vinblastine and methotrexate in childhood desmoid tumors. // J Clin Oncol. 1999. Vol. 17, № 3. P. 1086.
166. Mangla A., Agarwal N., Schwartz G. Desmoid Tumors: Current Perspective and Treatment. // Curr Treat Options Oncol. 2024. Vol. 25, № 2. P. 161–175.
167. Park M.S. et al. Activity of temozolomide and bevacizumab in the treatment of locally advanced, recurrent, and metastatic hemangiopericytoma and malignant solitary fibrous tumor. // Cancer. 2011. Vol. 117, № 21. P. 4939–4947.
168. Haas R.L. et al. Radiation Therapy as Sole Management for Solitary Fibrous Tumors (SFT): A Retrospective Study From the Global SFT Initiative in Collaboration With the Sarcoma Patients EuroNet. // Int J Radiat Oncol Biol Phys. 2018. Vol. 101, № 5. P. 1226–1233.
169. Stacchiotti S. et al. Preclinical and clinical evidence of activity of pazopanib in solitary fibrous tumour. // Eur J Cancer. 2014. Vol. 50, № 17. P. 3021–3028.
170. Stacchiotti S. et al. Patient-derived solitary fibrous tumour xenografts predict high sensitivity to doxorubicin/dacarbazine combination confirmed in the clinic and highlight the potential effectiveness of trabectedin or eribulin against this tumour. // Eur J Cancer. 2017. Vol. 76. P. 84–92.
171. Constantinidou A. et al. Conventional anthracycline-based chemotherapy has limited efficacy in solitary fibrous tumour. // Acta Oncol. 2012. Vol. 51, № 4. P. 550–554.
172. Park M.S. et al. The role of chemotherapy in advanced solitary fibrous tumors: a retrospective analysis. // Clin Sarcoma Res. 2013. Vol. 3, № 1. P. 7.
173. Levard A. et al. Outcome of patients with advanced solitary fibrous tumors: the Centre Léon Bérard experience. // BMC Cancer. 2013. Vol. 13. P. 109.
174. von Mehren M. et al. Phase 2 Southwest Oncology Group-directed intergroup trial (S0505) of sorafenib in advanced soft tissue sarcomas. // Cancer. 2012. Vol. 118, № 3. P. 770–776.
175. Valentin T. et al. Sorafenib in patients with progressive malignant solitary fibrous tumors: a subgroup analysis from a phase II study of the French Sarcoma Group (GSF/GETO). // Invest New Drugs. 2013. Vol. 31, № 6. P. 1626–1627.
176. Stacchiotti S. et al. Activity of axitinib in progressive advanced solitary fibrous tumour: Results from an exploratory, investigator-driven phase 2 clinical study. // Eur J Cancer. 2019. Vol. 106. P. 225–233.