Раздел 1.4

1.    Jo V.Y., Fletcher C.D. WHO classification of soft tissue tumours: an update based on the 2013 (4th) edition //Pathology-Journal of the RCPA.
2.    Феденко А.А., Бохян А.Ю., Горбунова В.А., Махсон АН., Тепляков ВВ. Практические рекомендации по лекарственному лечению сарком мягких тканей. Malig Tumours. 2021;11: 277–286. doi:10.18027/2224-5057-2021-11-3s2-18.
3.    Pillozzi S., Bernini A., Palchetti I., Crociani O., Antonuzzo L., Campanacci D., et al. Soft tissue sarcoma: An insight on biomarkers at molecular, metabolic and cellular level. Cancers (Basel). 2021;13: 3044. doi:10.3390/cancers13123044.
4.    Damerell V., Pepper M.S., Prince S. Molecular mechanisms underpinning sarcomas and implications for current and future therapy. Signal Transduct Target Ther. 2021;6: 246. doi:10.1038/s41392-021-00647-8.
5.    Agaram N.P., Antonescu C.R., Ladanyi M. WHO classification of soft tissue tumours: an update based on the 2013 (4th) edition. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 306–308.
6.    Sbaraglia M., Bellan E., Dei Tos A.P. The 2020 WHO Classification of Soft Tissue Tumours: news and perspectives. Pathologica. 2021;113: 70–84. doi:10.32074/1591-951X-213.
7.    Grünewald T.G., Alonso M., Avnet S., Banito A., Burdach S., Cidre-Aranaz F., et al. Sarcoma treatment in the era of molecular medicine. EMBO Mol Med. 2020;12: e11131. doi:10.15252/emmm.201911131.
8.    Gatta G., van der Zwan J.M., Casali P.G., Siesling S., Dei Tos A.P., Kunkler I., et al. Rare cancers are not so rare: the rare cancer burden in Europe. Eur J Cancer. 2011;47: 2493–2511. doi:10.1016/j.ejca.2011.08.008.
9.    Феденко А. А., Горбунова В. А. Саркомы мягких тканей //Саркомы костей, мягких тканей и опухоли кожи. 2011;4:3-11.
10. Lahat G., Lazar A., Lev D. Sarcoma Epidemiology and Etiology: Potential Environmental and Genetic Factors. Surgical Clinics of North America. 2008;88: 451–481. doi:10.1016/j.suc.2008.03.006.
11.  Borden E.C., Baker L.H., Bell R.S., Bramwell V., Demetri G.D., Eisenberg B.L., et al. Soft tissue sarcomas of adults: state of the translational science. Clin Cancer Res. 2003;9: 1941–1956. Available: https://www.ncbi.nlm.nih.gov/pubmed/12796356.
12. Fearon E.R. Human cancer syndromes: clues to the origin and nature of cancer. Science. 1997;278: 1043–1050. doi:10.1126/science.278.5340.1043.
13. Christopher D.M. Fletcher, Julia A. Bridge, Pancras C.W. Hogendoorn, Fredrik Mertens (Eds.): WHO Classification of Tumours of Soft Tissue and Bone. 5th Edition, Volume 3 IARC: Lyon 2020.
14. Home - OMIM. [cited 12 Dec 2024]. Available: https://omim.org/.
15.  Ognjanovic S. et al. Sarcomas in TP53 germline mutation carriers: a review of the IARC TP53 database //Cancer. – 2012. – Т. 118. – №. 5. – С. 1387-1396.
16.  Mai P. L. et al. Risks of first and subsequent cancers among TP53 mutation carriers in the National Cancer Institute Li‐Fraumeni syndrome cohort //Cancer. – 2016. – Т. 122. – №. 23. – С. 3673-3681.
17.  Потапов А.А., Абдилатипов А.А., Охлопков В.А., Гаврилов А.Г., Захарова Н.Е., Горяйнов С.А., et al. Синдром Ли-Фраумени у пациента со множественными анапластическими олигодендроглиомами головного мозга (клиническое наблюдение и обзор литературы). Вопросы нейрохирургии им. Н.Н. Бурденко. 2018;82: 87–96. Available: https://elibrary.ru/item.asp?id=35448247.
18. Hartley A.L., Birch J.M., Marsden H.B., Harris M. Malignant melanoma in families of children with osteosarcoma, chondrosarcoma, and adrenal cortical carcinoma. J Med Genet. 1987;24: 664–668. doi:10.1136/jmg.24.11.664.
19.  Любченко Л.Н., Семьянихина А.В., Фу Р.Г., Прозоренко Е.В.., Кузьмин АН., Соколовский В.А., et al. Синдром Ли-Фраумени: ТР53-ассоциированные первично-множественные злокачественные опухоли. Вестник РОНЦ им. Н.Н. Блохина РАМН. 2012;23: 52–58. Available: https://cyberleninka.ru/article/n/sindrom-li-fraumeni-tr53-assotsiirovannye-pervichno-mnozhestvennye-zlokachestvennye-opuholi.
20. Malkin D., Li F.P., Strong L.C., Fraumeni J.F. Jr., Nelson C.E., Kim D.H., et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250: 1233–1238. doi:10.1126/science.1978757.
21. Mai P.L., Best A.F., Peters J.A., DeCastro R.M., Khincha P.P., Loud J.T., et al. Risks of first and subsequent cancers among TP53 mutation carriers in the National Cancer Institute Li-Fraumeni syndrome cohort. Cancer. 2016;122: 3673–3681. doi:10.1002/cncr.30248
22. de Andrade KC, Mirabello L, Stewart DR, Karlins E, Koster R, Wang M, et al. Higher-than-expected population prevalence of potentially pathogenic germlineTP53variants in individuals unselected for cancer history. Hum Mutat. 2017;38: 1723–1730. doi:10.1002/humu.23320.
23. Rocca V., Blandino G., D’Antona L., Iuliano R., Di Agostino S. Li-Fraumeni syndrome: Mutation of TP53 is a biomarker of hereditary predisposition to tumor: New insights and advances in the treatment. Cancers (Basel). 2022;14: 3664. doi:10.3390/cancers14153664.
24.  Li F.P., Fraumeni J.F. Jr., Mulvihill J.J., Blattner W.A., Dreyfus M.G., Tucker M.A., et al. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988;48: 5358–5362. Available: https://www.ncbi.nlm.nih.gov/pubmed/3409256.
25. Birch J.M., Hartley A.L., Tricker K.J., Prosser J., Condie A., Kelsey A.M., et al. Prevalence and diversity of constitutional mutations in the p53 gene among 21 Li-Fraumeni families. Cancer Res. 1994;54: 1298–1304. Available: https://www.ncbi.nlm.nih.gov/pubmed/8118819.
26.  Eeles R.A. Germline mutations in the TP53 gene. Cancer Surv. 1995;25: 101–124. Available: https://www.ncbi.nlm.nih.gov/pubmed/8718514.
27. Manoukian S., Peissel B., Frigerio S., Lecis D., Bartkova J., Roversi G., et al. Two new CHEK2 germ-line variants detected in breast cancer/sarcoma families negative for BRCA1, BRCA2, and TP53 gene mutations. Breast Cancer Res Treat. 2011;130: 207–215. doi:10.1007/s10549-011-1548-5.
28. Bell D.W., Varley J.M., Szydlo T.E., Kang D.H., Wahrer D.C.R., Shannon K.E., et al. Heterozygous Germ Line hCHK2 Mutations in Li-Fraumeni Syndrome. Science. 1999;286: 2528–2531. doi:10.1126/science.286.5449.2528.
29. Sadri N., Surrey L.F., Fraker D.L., Zhang P.J. Retroperitoneal dedifferentiated liposarcoma lacking MDM2 amplification in a patient with a germ line CHEK2 mutation. Virchows Arch. 2014;464: 505–509. doi:10.1007/s00428-014-1563-0.
30. Näslund-Koch C., Nordestgaard B.G., Bojesen S.E. Increased risk for other cancers in addition to breast cancer for CHEK2*1100delC heterozygotes estimated from the Copenhagen General Population Study. J Clin Oncol. 2016;34: 1208–1216. doi:10.1200/JCO.2015.63.3594.
31. Голотюк М.А., Бережной А.А., Казанцева Н.В., Дорофеев А.В., Борзунова Т.И. Герминальные мутации в генах PALB2 и CHEK2 и наследственный рак. Уральский медицинский журнал. 2023;22: 126–136. Available: https://cyberleninka.ru/article/n/germinalnye-mutatsii-v-genah-palb2-i-chek2-i-nasledstvennyy-rak.
32. Pushkarev A.V., Galeev M.G., Pushkarev V.A., Sultanbaev A.V. Genetic predictors of malignancy: A literature review. Creat Surg Oncol. 2021;11: 157–165. doi:10.24060/2076-3093-2021-11-2-157-165.
33. Kirchner K., Gamulin M., Kulis T., Sievers B., Kastelan Z., Lessel D. Comprehensive clinical and genetic analysis of CHEK2 in Croatian men with prostate cancer. Genes (Basel). 2022;13: 1955. doi:10.3390/genes13111955.
34.  Любченко Л.Н., Филиппова М.Г. Нейрофиброматоз: генетическая гетерогенность и дифференциальная диагностика. Саркомы костей, мягких тканей и опухоли кожи. 2011; 29–36. Available: https://sarbon.elpub.ru/jour/article/view/252.
35. Williams V.C., Lucas J., Babcock M.A., Gutmann D.H., Korf B., Maria B.L. Neurofibromatosis type 1 revisited. Pediatrics. 2009;123: 124–133. doi:10.1542/peds.2007-3204
36. Wilson B.N., John A.M., Handler M.Z., Schwartz R.A. Neurofibromatosis type 1: New developments in genetics and treatment. J Am Acad Dermatol. 2021;84: 1667–1676. doi:10.1016/j.jaad.2020.07.105.
37. Кутлянцева А.Ю., Кушнир Е.В. Neurofibromatosis type 1. Differences of the clinical picture of neurofibromatosis type 1 in patients with different heritage varients. Педиатрический вестник Южного Урала. 2021; 92–100. doi:10.34710/chel.2021.99.18.012.
38. Barrea C., Vaessen S., Bulk S., Harvengt J., Misson J-P. Phenotype-genotype correlation in children with neurofibromatosis type 1. Neuropediatrics. 2018;49: 180–184. doi:10.1055/s-0037-1620239.
39. Christopher D.M. Fletcher, Julia A. Bridge, Pancras C.W. Hogendoorn, Fredrik Mertens (Eds.): WHO Classification of Tumours of Soft Tissue and Bone. 5th Edition, Volume 3 IARC: Lyon 2020.
40. Christopher D.M. Fletcher, Julia A. Bridge, Pancras C.W. Hogendoorn, Fredrik Mertens (Eds.): WHO Classification of Tumours of Soft Tissue and Bone. 5th Edition, Volume 3 IARC: Lyon 2020.
41. Jhas S., Henriques L., Hawkins C., Bouffet E., Rutka J.T. An intracranial leiomyosarcoma in a child with neurofibromatosis type 1. Can J Neurol Sci. 2009;36: 491–495. doi:10.1017/s031716710000785x.
42. Мазуренко Н.Н., Цыганова И.В. Молекулярно-генетические особенности и маркеры гастроинтестинальных стромальных опухолей. Успехи молекулярной онкологии. 2015;2: 29–40. doi:10.17650/2313-805X.2015.2.2.29-40.
43. Wu C.-E., Tzen C.-Y., Wang S.-Y., Yeh C.-N. Clinical diagnosis of gastrointestinal stromal tumor (GIST): From the molecular genetic Point of View. Cancers (Basel). 2019;11: 679. doi:10.3390/cancers11050679.
44. Miettinen M., Lasota J. Histopathology of gastrointestinal stromal tumor. J Surg Oncol. 2011;104: 865–873. doi:10.1002/jso.21945.
45. Мазуренко Н.Н., Югай В.В., Цыганова И.В. Молекулярные особенности гастроинтестинальных стромальных опухолей «дикого типа»(KIT/PDGFRA WT). Успехи молекулярной онкологии. 2023;10: 61–75. Available: https://cyberleninka.ru/article/n/molekulyarnye-osobennosti-gastrointestinalnyh-stromalnyh-opuholey-dikogo-tipa-kit-pdgfra-wt.
46. Шкурлатовская К.М., Орлова А.С., Силина Е.В., Синельникова Т.Г., Олисова О.Ю., Теплюк Н.П., et al. Molecular and genetic mechanisms of mastocytosis. Patol Fiziol Eksp Ter. 2019; 127–133. doi:10.25557/0031-2991.2019.03.127-133.
47. Heinrich M.C., Corless C.L., Duensing A., McGreevey L., Chen C.-J., Joseph N., et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003;299: 708–710. doi:10.1126/science.1079666.
48. Moosavi B., Zhu X.-L., Yang W.-C., Yang G.-F. Genetic, epigenetic and biochemical regulation of succinate dehydrogenase function. Biol Chem. 2020;401: 319–330. doi:10.1515/hsz-2019-0264.
49. Zhang W., Hu X., Chen Z., Lai C. Case report: Neurofibromatosis type 1 gastrointestinal stromal tumor and small bowel adenocarcinoma with a novel germline NF1 frameshift mutation. Front Oncol. 2022;12. doi:10.3389/fonc.2022.105279910.3389/fonc.2022.1052799.s001.
50. Tepelenis K., Papathanakos G., Kitsouli A., Troupis T., Barbouti A., Vlachos K., et al. Osteochondromas: An Updated Review of Epidemiology, Pathogenesis, Clinical Presentation, Radiological Features and Treatment Options. In Vivo. 2021;35: 681–691. doi:10.21873/invivo.12308.
51. Pannier S., Legeai-Mallet L. Hereditary multiple exostoses and enchondromatosis. Best Practice & Research Clinical Rheumatology. 2008;22: 45–54. doi:10.1016/j.berh.2007.12.004.
52. Bovée J.V.M.G. Multiple osteochondromas. Orphanet J Rare Dis. 2008;3: 3. doi:10.1186/1750-1172-3-3.
53. de Andrea C.E., Reijnders C.M.A., Kroon H.M., de Jong D., Hogendoorn P.C.W., Szuhai K, et al. Secondary peripheral chondrosarcoma evolving from osteochondroma as a result of outgrowth of cells with functional EXT. Oncogene. 2012;31: 1095–1104. doi:10.1038/onc.2011.311.
54.  Hennekam R.C. Hereditary multiple exostoses. Journal of medical genetics. 1991;28: 262. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1016830/.
55. Lam S.W., van IJzendoorn D.G.P., Cleton-Jansen A.-M., Szuhai K., Bovée J.V.M.G. Molecular Pathology of Bone Tumors. J Mol Diagn. 2019;21: 171–182. doi:10.1016/j.jmoldx.2018.11.002.
56. Francannet C., Cohen-Tanugi A., Le Merrer M., Munnich A., Bonaventure J., Legeai-Mallet L. Genotype-phenotype correlation in hereditary multiple exostoses. J Med Genet. 2001;38: 430–434. doi:10.1136/jmg.38.7.430.
57. Hameed S., Yu A.C., Almadani B., Abualkhair S., Ahmad K., Zauli G. Genetic risk factors and clinical outcomes in childhood eye cancers: A review. Genes (Basel). 2024;15. doi:10.3390/genes15030276.
58.  Саакян С.В., Тадевосян С.С., Цыганков А.Ю., Иванова О.А. Вторые опухоли у больных ретинобластомой в отдаленном периоде наблюдения (серия клинических случаев). Head and Neck/Голова и шея Российское издание Журнал Общероссийской общественной организации Федерация специалистов по лечению заболеваний головы и шеи. 2021;9: 83–90. Available: https://elibrary.ru/item.asp?id=44945729.
59. Загидуллина А.А., Харбедия В.Х., Нисиченко Д.В., Дзампаев А.З., Михайлова С.Н. Опыт лечения первично-множественных злокачественных опухолей (ретинобластомы и остеосаркомы): разбор клинического случая. Саркомы костей, мягких тканей и опухоли кожи. 2021;13: 36–43. Available: https://sarbon.elpub.ru/jour/article/view/117.
60. Calvert G.T., Randall R.L., Jones K.B., Cannon-Albright L., Lessnick S., Schiffman J.D. At-risk populations for osteosarcoma: the syndromes and beyond. Sarcoma. 2012;2012: 152382. doi:10.1155/2012/152382.
61. Christopher D.M. Fletcher, Julia A. Bridge, Pancras C.W. Hogendoorn, Fredrik Mertens (Eds.): WHO Classification of Tumours of Soft Tissue and Bone. 5th Edition, Volume 3 IARC: Lyon 2020.
62. Синиченкова К. Ю. и др. Синдром предрасположенности к развитию рабдоидных опухолей на примере клинического случая //Российский журнал детской гематологии и онкологии. 2019. Т. 6. №. S1. С. 70–71.
63. Телешова М. В. Злокачественные рабдоидные опухоли мягких тканей у детей. Обзор литературы //Российский журнал детской гематологии и онкологии. 2017. №. 4. С. 56–66.
64. Bögershausen N., Wollnik B. Mutational landscapes and phenotypic spectrum of SWI/SNF-related intellectual disability disorders. Front Mol Neurosci. 2018;11. doi:10.3389/fnmol.2018.00252.
65. Atlasgeneticsoncology [Электронный ресурс]. - Режим доступа: https://atlasgeneticsoncology.org/.
66. Bayley J.-P., Launonen V., Tomlinson I.P.M. The FH mutation database: an online database of fumarate hydratase mutations involved in the MCUL (HLRCC) tumor syndrome and congenital fumarase deficiency. BMC Med Genet. 2008;9: 20. doi:10.1186/1471-2350-9-20.
67. Филиппова М.Г., Михайленко Д.С., Самойленко И.В., Сергеев Ю.С., Козлов Н.А., Файнштейн И.А., et al. Наследственный лейомиоматоз и почечноклеточный рак: клинический случай. Cancer Urol. 2022; 211–216. Available: https://cyberleninka.ru/article/n/nasledstvennyy-leyomiomatoz-i-pochechnokletochnyy-rak-klinicheskiy-sluchay.
68. Balajee A.S. Human RecQL4 as a novel molecular target for cancer therapy. Cytogenet Genome Res. 2021;161: 305–327. doi:10.1159/000516568.
69. Сибгатуллина Ф.И., Имянитов Е.И., Суспицин Е.И., Пятеркина О.Г., Вильданов И.Х. Первый генетически подтвержденный случай синдрома Блума в России. Практическая медицина. 2016; 102–105. Available: https://cyberleninka.ru/article/n/pervyy-geneticheski-podtverzhdennyy-sluchay-sindroma-bluma-v-rossii.
70. Abu-Libdeh B., Jhujh S.S., Dhar S., Sommers J.A., Datta A., Longo G.M., et al. RECON syndrome is a genome instability disorder caused by mutations in the DNA helicase RECQL1. J Clin Invest. 2022;132. doi:10.1172/JCI147301.
71. Goto M., Miller R.W., Ishikawa Y., Sugano H. Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol Biomarkers Prev. 1996;5: 239–246. Available: https://www.ncbi.nlm.nih.gov/pubmed/8722214.
72. Christopher D.M. Fletcher, Julia A. Bridge, Pancras C.W. Hogendoorn, Fredrik Mertens (Eds.): WHO Classification of Tumours of Soft Tissue and Bone. 5th Edition, Volume 3 IARC: Lyon 2020.
73.  Щербачева А.О. ВЛИЯНИЕ МУТАЦИЙ В ГЕНАХ LMNA И RECQL НА РАЗВИТИЕ ПРОГЕРИИ. 2021. Available: https://elibrary.ru/item.asp?id=46431116.
74. Цолин В.А. Синдром Вернера //International Journal of Advanced Studies in Medicine and Biomedical Sciences. 2019. №. 1. С. 102–105.
75. Cunniff C., Bassetti J.A., Ellis N.A. Bloom’s syndrome: Clinical spectrum, molecular pathogenesis, and cancer predisposition. Mol Syndromol. 2017;8: 4–23. doi:10.1159/000452082.
76. German J. Bloom’s syndrome. XX. The first 100 cancers. Cancer Genet Cytogenet. 1997;93: 100–106. doi:10.1016/s0165-4608(96)00336-6.
77. Sanz M.M., German J., Cunniff C. Bloom’s Syndrome. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet] Seattle: University of Washington; 1993-2016. Initial posting: 2006 Mar 22; last update: 2016 Apr 7.
78. Li L., Eng C., Desnick R.J., German J., Ellis N.A. Carrier frequency of the Bloom syndrome blmAsh mutation in the Ashkenazi Jewish population. Mol Genet Metab. 1998;64: 286–290. doi:10.1006/mgme.1998.2733.
79. Stinco G., Governatori G., Mattighello P., Patrone P. Multiple cutaneous neoplasms in a patient with Rothmund-Thomson syndrome: case report and published work review. J Dermatol. 2008;35: 154–161. doi:10.1111/j.1346-8138.2008.00436.x.
80. Siitonen H.A., Sotkasiira J., Biervliet M., Benmansour A., Capri Y., Cormier-Daire V., et al. The mutation spectrum in RECQL4 diseases. Eur J Hum Genet. 2009;17: 151–158. doi:10.1038/ejhg.2008.154.
81. Крищанович Д. Д. и др. Синдром Беквита-Видемана: клинический случай, клинико-генетические маркеры //FORCIPE. 2022. Т. 5. №. S2. С. 283–284.
82. Elefante P., Spedicati B., Faletra F., Pignata L., Cerrato F., Riccio A., et al. Beckwith-Wiedemann syndrome and twinning: case report and brief review of literature. Ital J Pediatr. 2023;49: 127. doi:10.1186/s13052-023-01530-8.
83. Rump P., Zeegers M.P.A., van Essen A.J. Tumor risk in Beckwith-Wiedemann syndrome: A review and meta-analysis. Am J Med Genet A. 2005;136: 95–104. doi:10.1002/ajmg.a.30729.
84. Hanks S., Coleman K., Reid S., Plaja A., Firth H., Fitzpatrick D., et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet. 2004;36: 1159–1161. doi:10.1038/ng1449.
85. Callier P., Faivre L., Cusin V., Marle N., Thauvin-Robinet C., Sandre D., et al. Microcephaly is not mandatory for the diagnosis of mosaic variegated aneuploidy syndrome. Am J Med Genet A. 2005;137: 204–207. doi:10.1002/ajmg.a.30783.
86. Lin S.M., Luk H.M., Lo I.F.M., Tam W.-K., Chan K.Y.K., Tse H.-Y., et al. Prenatal diagnosis and long-term follow-up of a Chinese patient with mosaic variegated aneuploidy and its molecular analysis. Clin Case Rep. 2020;8: 1369–1375. doi:10.1002/ccr3.2802.
87. Matsuura S., Matsumoto Y., Morishima K.-I., Izumi H., Matsumoto H., Ito E., et al. Monoallelic BUB1B mutations and defective mitotic-spindle checkpoint in seven families with premature chromatid separation (PCS) syndrome. Am J Med Genet A. 2006;140: 358–367. doi:10.1002/ajmg.a.31069.
88. Pavone P., Pappalardo X.G., Mustafa N., Falsaperla R., Marino S.D., Corsello G., et al. Pathogenic correlation between mosaic variegated aneuploidy 1 (MVA1) and a novel BUB1B variant: a reappraisal of a severe syndrome. Neurol Sci. 2022;43: 6529–6538. doi:10.1007/s10072-022-06247-w.
89. Исмагилова О.Р. и др. Молекулярно-генетические основы синдрома Рубинштейна-Тейби //Нервно-мышечные болезни. 2023. Т. 13. №. 2. С. 31–41.
90. Лисовский Е.В., Кусаинова К.К., Раисова А.М., Кенжебекова М.О., Жылкыбаев Г.Л. Синдром Рубинштейна-Тейби в практике детского невропатолога // J Clin Med Kaz. 2015. №2 (36).
91. Телешова М.В., Ясько Л.А., Маслёнкова Е.В., Меркулов Н.Н., Коновалов Д.М., Курникова М.А., et al. Семейный случай DICER1-синдрома у пациента с плевропульмональной бластомой. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2022;21: 134–141. Available: https://www.hemoncim.com/jour/article/view/639.
92. Schultz K.A., Yang J., Doros L., Williams G.M., Harris A., Stewart D.R., et al. DICER1-pleuropulmonary blastoma familial tumor predisposition syndrome: a unique constellation of neoplastic conditions. Pathol Case Rev. 2014;19: 90–100. doi:10.1097/PCR.0000000000000027.
93.  .Салиева С.С., Жумадуллаев Б.М., Сарсекбаев Е.С. Плевропульмональная бластома: обзор литературы и собственное клиническое наблюдение. Онкопедиатрия. 2015;2: 223–228. Available: https://cyberleninka.ru/article/n/plevropulmonalnaya-blastoma-obzor-literatury-i-sobstvennoe-klinicheskoe-nablyudenie.
94.  Исабаева А., Тулебаева А., Ташенова Г., Садуова А., Булабаева Г. Клинический случай: плевропульмональная бластома. Актуальные вопросы публичного права. 2024;1: 282–284. Available: https://inlibrary.uz/index.php/issues-practical-pediatrics/article/view/33524.
95. Novokreshennih E.E., Kolodkina A.A., Bezlepkina O.B. DICER1 syndrome: clinical variety endocrine manifestations and features of diagnostics. Probl Endokrinol (Mosk). 2023;70: 78–85. doi:10.14341/probl13383.
96. Roche B., Arcangioli B., Martienssen R. New roles for Dicer in the nucleolus and its relevance to cancer. Cell Cycle. 2017;16: 1643–1653. doi:10.1080/15384101.2017.1361568.
97.  Харитонова Н.А., Басаргина М.А., Митиш М.Д., Жарова О.П., Кокина М.Ю. Синдром Костелло в практике неонатолога. Клинический случай. Медицинский оппонент. 2021;4: 76–80. Available: https://elibrary.ru/item.asp?id=48258883.
98. Завьялова А.Н., Лисица И.А., Лисовский О.В., Осипов А.И. Patient with Costello syndrome: Literature review and clinical case. Children’s medicine of the North-West. 2023;11: 99–109. doi:10.56871/cmn-w.2023.61.17.012.
99. Aoki Y., Niihori T., Kawame H., Kurosawa K., Ohashi H., Tanaka Y., et al. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat Genet. 2005;37: 1038–1040. doi:10.1038/ng1641.
100.    Бурдейко Д.Г. Распространенность злокачественных новообразований у детей и молодых взрослых с синдромом Неймегена. 2023.
101. Белозеров Ю.М., Брегель Л.В., Субботин В.М. Синдром Неймегена у детей. 2018. Available: https://elibrary.ru/item.asp?id=35596194.
102. Каган М.Ю., Шулакова Н.С., Гумирова Р.А., Злодеева Е.А., Резник Н.В. Синдром Ниймеген (клиническое наблюдение). Педиатрическая фармакология. 2012;9: 102–105. Available: https://cyberleninka.ru/article/n/sindrom-niymegen-klinicheskoe-nablyudenie.
103. Antonescu C.R. The role of genetic testing in soft tissue sarcoma. Histopathology. 2006;48: 13–21. doi:10.1111/j.1365-2559.2005.02285.x.
104. Bridge J.A. The role of cytogenetics and molecular diagnostics in the diagnosis of soft-tissue tumors. Mod Pathol. 2014;27 Suppl 1: S80–97. doi:10.1038/modpathol.2013.179.
105. Mertens F., Antonescu C.R., Hohenberger P., Ladanyi M., Modena P., D’Incalci M., et al. Translocation-related sarcomas. Semin Oncol. 2009;36: 312–323. doi:10.1053/j.seminoncol.2009.06.004.
106. Bridge J.A., Cushman-Vokoun A.M. Molecular diagnostics of soft tissue tumors. Arch Pathol Lab Med. 2011;135: 588–601. doi:10.5858/2010-0594-RAIR.1.
107. Wang W.-L., Lazar A. Applications of molecular testing to differential diagnosis. Practical Soft Tissue Pathology: a Diagnostic Approach. 2019. doi:10.1016/B978-0-323-49714-5.00018-1.
108. Gibault L., Pérot G., Chibon F., Bonnin S., Lagarde P., Terrier P., et al. New insights in sarcoma oncogenesis: a comprehensive analysis of a large series of 160 soft tissue sarcomas with complex genomics. J Pathol. 2011;223: 64–71. doi:10.1002/path.2787.
109. Tanas M.R., Goldblum J.R. Fluorescence in situ hybridization in the diagnosis of soft tissue neoplasms: a review. Adv Anat Pathol. 2009;16: 383–391. doi:10.1097/PAP.0b013e3181bb6b86.
110. Oda Y., Yamamoto H., Kohashi K., Yamada Y., Iura K., Ishii T., et al. Soft tissue sarcomas: From a morphological to a molecular biological approach. Pathol Int. 2017;67: 435–446. doi:10.1111/pin.12565.
111. Groisberg R., Roszik J., Conley A., Patel S.R., Subbiah V. The Role of Next-Generation Sequencing in Sarcomas: Evolution From Light Microscope to Molecular Microscope. Curr Oncol Rep. 2017;19: 78. doi:10.1007/s11912-017-0641-2.
112. ESMO/European Sarcoma Network Working Group. Soft tissue and visceral sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25 Suppl 3: iii102–12. doi:10.1093/annonc/mdu254.
113. Hornick J.L. Novel uses of immunohistochemistry in the diagnosis and classification of soft tissue tumors. Mod Pathol. 2014;27 Suppl 1: S47–63. doi:10.1038/modpathol.2013.177.
114. Fletcher C.D.M. Tumors of soft tissue. 3rd ed. In: M. FCD, editor. Diagnostic Histopathology of Tumors 5th ed. 3rd ed. Philadelphia, PA, USA: Elsevier; 2021. pp. 1919–1984. Available: https://books.google.at/books?id=V9FsBQAAQBAJ.
115. Choi J.H., Ro J.Y. The Recent Advances in Molecular Diagnosis of Soft Tissue Tumors. Int J Mol Sci. 2023;24. doi:10.3390/ijms24065934.
116. Billing S. D. UDN. Spindle cell lipoma and pleomorphic lipoma. In: The WHO Classification of Tumours Editorial Board, editor., editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC; 2020. pp. 29–30. Available: https://books.google.com/books/about/Soft_Tissue_and_Bone_Tumours.html?hl=&id=kaR9zQEACAAJ.
117. Fletcher C.D., Akerman M., Dal Cin P., de Wever I., Mandahl N., Mertens F., et al. Correlation between clinicopathological features and karyotype in lipomatous tumors. A report of 178 cases from the Chromosomes and Morphology (CHAMP) Collaborative Study Group. Am J Pathol. 1996;148: 623–630. Available: https://www.ncbi.nlm.nih.gov/pubmed/8579124.
118. Chen B.J., Mariño-Enríquez A., Fletcher C.D.M., Hornick J.L. Loss of retinoblastoma protein expression in spindle cell/pleomorphic lipomas and cytogenetically related tumors: an immunohistochemical study with diagnostic implications. Am J Surg Pathol. 2012;36: 1119–1128. doi:10.1097/PAS.0b013e31825d532d.
119. Dahlén A., Debiec-Rychter M., Pedeutour F., Domanski H.A., Höglund M., Bauer H.C.F., et al. Clustering of deletions on chromosome 13 in benign and low-malignant lipomatous tumors. Int J Cancer. 2003;103: 616–623. doi:10.1002/ijc.10864.
120. Magro G., Righi A., Casorzo L., Antonietta T., Salvatorelli L., Kacerovská D., et al. Mammary and vaginal myofibroblastomas are genetically related lesions: fluorescence in situ hybridization analysis shows deletion of 13q14 region. Hum Pathol. 2012;43: 1887–1893. doi:10.1016/j.humpath.2012.01.015.
121. Howitt B.E., Fletcher C.D.M. Mammary-type Myofibroblastoma: Clinicopathologic Characterization in a Series of 143 Cases. Am J Surg Pathol. 2016;40: 361–367. doi:10.1097/PAS.0000000000000540.
122. Flucke U., van Krieken J.H.J.M., Mentzel T. Cellular angiofibroma: analysis of 25 cases emphasizing its relationship to spindle cell lipoma and mammary-type myofibroblastoma. Mod Pathol. 2011;24: 82–89. doi:10.1038/modpathol.2010.170.
123. D. Creytens A.M.-E. Atypical spindle cell/pleomorphic lipomatous tumour. In: The WHO Classification of Tumours Editorial Board, editor., editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC; 2020. pp. 34–35. Available: https://play.google.com/store/books/details?id=kaR9zQEACAAJ.
124. Mariño-Enriquez A., Nascimento A.F., Ligon A.H., Liang C., Fletcher C.D.M. Atypical Spindle Cell Lipomatous Tumor: Clinicopathologic Characterization of 232 Cases Demonstrating a Morphologic Spectrum. Am J Surg Pathol. 2017;41: 234–244. doi:10.1097/PAS.0000000000000770.
125. Creytens D., Mentzel T., Ferdinande L., Lecoutere E., van Gorp J., Atanesyan L., et al. “Atypical” Pleomorphic Lipomatous Tumor: A Clinicopathologic, Immunohistochemical and Molecular Study of 21 Cases, Emphasizing its Relationship to Atypical Spindle Cell Lipomatous Tumor and Suggesting a Morphologic Spectrum (Atypical Spindle Cell/Pleomorphic Lipomatous Tumor). Am J Surg Pathol. 2017;41: 1443–1455. doi:10.1097/PAS.0000000000000936.
126. Bahadır B., Behzatoğlu K., Hacıhasanoğlu E., Koca S.B., Sığırcı B.B., Tokat F. Atypical spindle cell/pleomorphic lipomatous tumor: A clinicopathologic, immunohistochemical, and molecular study of 20 cases. Pathol Int. 2018;68: 550–556. doi:10.1111/pin.12719.
127. Mentzel T., Palmedo G., Kuhnen C. Well-differentiated spindle cell liposarcoma (’atypical spindle cell lipomatous tumor') does not belong to the spectrum of atypical lipomatous tumor but has a close relationship to spindle cell lipoma: clinicopathologic, immunohistochemical, and molecular analysis of six cases. Mod Pathol. 2010;23: 729–736. doi:10.1038/modpathol.2010.66.
128. Thway K. What’s new in adipocytic neoplasia? Histopathology. 2022;80: 76–97. doi:10.1111/his.14548.
129. Demicco E.G. Molecular updates in adipocytic neoplasms. Semin Diagn Pathol. 2019;36: 85–94. doi:10.1053/j.semdp.2019.02.003.
130. Creytens D. M.-E.A. Atypical spindle cell/pleomorphic lipomatous tumour. In: The WHO Classification of Tumours Editorial Board, editor., editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 34–35.
131. Italiano A., Bianchini L., Gjernes E., Keslair F., Ranchere-Vince D., Dumollard J.-M., et al. Clinical and biological significance of CDK4 amplification in well-differentiated and dedifferentiated liposarcomas. Clin Cancer Res. 2009;15: 5696–5703. doi:10.1158/1078-0432.CCR-08-3185.
132. Bovée J.V.M.G., Huang S.C., Wang J. Epithelioid haemangioma. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 152–153.
133. Makise N., Sekimizu M., Kubo T., Wakai S., Hiraoka N., Komiyama M., et al. Clarifying the Distinction Between Malignant Peripheral Nerve Sheath Tumor and Dedifferentiated Liposarcoma: A Critical Reappraisal of the Diagnostic Utility of MDM2 and H3K27me3 Status. Am J Surg Pathol. 2018;42: 656–664. doi:10.1097/PAS.0000000000001014.
134. Schoolmeester J.K., Sciallis A.P., Greipp P.T., Hodge J.C., Dal Cin P., Keeney G.L., et al. Analysis of MDM2 Amplification in 43 Endometrial Stromal Tumors: A Potential Diagnostic Pitfall. Int J Gynecol Pathol. 2015;34: 576–583. doi:10.1097/PGP.0000000000000187.
135. He X., Pang Z., Zhang X., Lan T., Chen H., Chen M., et al. Consistent amplification of FRS2 and MDM2 in low-grade osteosarcoma: A genetic study of 22 cases with clinicopathologic analysis. Am J Surg Pathol. 2018;42: 1143–1155. doi:10.1097/PAS.0000000000001125.
136. Wunder J.S., Eppert K., Burrow S.R., Gokgoz N., Bell R.S., Andrulis I.L. Co-amplification and overexpression of CDK4, SAS and MDM2 occurs frequently in human parosteal osteosarcomas. Oncogene. 1999;18: 783–788. doi:10.1038/sj.onc.1202346.
137. Neuville A., Collin F., Bruneval P., Parrens M., Thivolet F., Gomez-Brouchet A., et al. Intimal sarcoma is the most frequent primary cardiac sarcoma: clinicopathologic and molecular retrospective analysis of 100 primary cardiac sarcomas. Am J Surg Pathol. 2014;38: 461–469. doi:10.1097/PAS.0000000000000184.
138. Zhang H., Erickson-Johnson M., Wang X., Oliveira J.L., Nascimento A.G., Sim F.H., et al. Molecular testing for lipomatous tumors: critical analysis and test recommendations based on the analysis of 405 extremity-based tumors. Am J Surg Pathol. 2010;34: 1304–1311. doi:10.1097/PAS.0b013e3181e92d0b.
139. Dei Tos A.P., Marino-Enriquez A., Pedeutour F. Dedifferentiated liposarcoma. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 39–41.
140. Mariño-Enríquez A., Fletcher C.D.M., Dal Cin P., Hornick J.L. Dedifferentiated liposarcoma with “homologous” lipoblastic (pleomorphic liposarcoma-like) differentiation: clinicopathologic and molecular analysis of a series suggesting revised diagnostic criteria. Am J Surg Pathol. 2010;34: 1122–1131. doi:10.1097/PAS.0b013e3181e5dc49.
141. Saâda-Bouzid E., Burel-Vandenbos F., Ranchère-Vince D., Birtwisle-Peyrottes I., Chetaille B., Bouvier C., et al. Prognostic value of HMGA2, CDK4, and JUN amplification in well-differentiated and dedifferentiated liposarcomas. Mod Pathol. 2015;28: 1404–1414. doi:10.1038/modpathol.2015.96.
142. Thway K., Flora R., Shah C., Olmos D., Fisher C. Diagnostic utility of p16, CDK4, and MDM2 as an immunohistochemical panel in distinguishing well-differentiated and dedifferentiated liposarcomas from other adipocytic tumors. Am J Surg Pathol. 2012;36: 462–469. doi:10.1097/PAS.0b013e3182417330.
143. Sirvent N., Coindre J.-M., Maire G., Hostein I., Keslair F., Guillou L., et al. Detection of MDM2-CDK4 amplification by fluorescence in situ hybridization in 200 paraffin-embedded tumor samples: utility in diagnosing adipocytic lesions and comparison with immunohistochemistry and real-time PCR. Am J Surg Pathol. 2007;31: 1476–1489. doi:10.1097/PAS.0b013e3180581fff.
144. Le Guellec S., Chibon F., Ouali M., Perot G., Decouvelaere A.-V., Robin Y.-M., et al. Are peripheral purely undifferentiated pleomorphic sarcomas with MDM2 amplification dedifferentiated liposarcomas? Am J Surg Pathol. 2014;38: 293–304. doi:10.1097/PAS.0000000000000131.
145. Thway K. NTO. Myxoid liposarcoma. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 42–44.
146. Powers M.P., Wang W.-L., Hernandez V.S., Patel K.S., Lev D.C., Lazar A.J., et al. Detection of myxoid liposarcoma-associated FUS-DDIT3 rearrangement variants including a newly identified breakpoint using an optimized RT-PCR assay. Mod Pathol. 2010;23: 1307–1315. doi:10.1038/modpathol.2010.118.
147. Han J., Murthy R., Wood B., Song B., Wang S., Sun B., et al. ER stress signalling through eIF2α and CHOP, but not IRE1α, attenuates adipogenesis in mice. Diabetologia. 2013;56: 911–924. doi:10.1007/s00125-012-2809-5.
148. Brenner S., Bercovich Z., Feiler Y., Keshet R., Kahana C. Dual Regulatory Role of Polyamines in Adipogenesis. J Biol Chem. 2015;290: 27384–27392. doi:10.1074/jbc.M115.686980.
149. Pérez-Mancera P.A., Bermejo-Rodríguez C., Sánchez-Martín M., Abollo-Jiménez F., Pintado B., Sánchez-García I. FUS-DDIT3 prevents the development of adipocytic precursors in liposarcoma by repressing PPARgamma and C/EBPalpha and activating eIF4E. PLoS One. 2008;3: e2569. doi:10.1371/journal.pone.0002569.
150. Koelsche C., Renner M., Hartmann W., Brandt R., Lehner B., Waldburger N., et al. TERT promoter hotspot mutations are recurrent in myxoid liposarcomas but rare in other soft tissue sarcoma entities. J Exp Clin Cancer Res. 2014;33: 33. doi:10.1186/1756-9966-33-33.
151. Trautmann M., Cyra M., Isfort I., Jeiler B., Krüger A., Grünewald I., et al. Phosphatidylinositol-3-kinase (PI3K)/Akt Signaling is Functionally Essential in Myxoid Liposarcoma. Mol Cancer Ther. 2019;18: 834–844. doi:10.1158/1535-7163.MCT-18-0763.
152. Baranov E., Black M.A., Fletcher C.D.M., Charville G.W., Hornick J.L. Nuclear expression of DDIT3 distinguishes high-grade myxoid liposarcoma from other round cell sarcomas. Mod Pathol. 2021;34: 1367–1372. doi:10.1038/s41379-021-00782-1.
153. Italiano A., Di Mauro I., Rapp J., Pierron G., Auger N., Alberti L., et al. Clinical effect of molecular methods in sarcoma diagnosis (GENSARC): a prospective, multicentre, observational study. Lancet Oncol. 2016;17: 532–538. doi:10.1016/S1470-2045(15)00583-5.
154. Narendra S., Valente A., Tull J., Zhang S. DDIT3 gene break-apart as a molecular marker for diagnosis of myxoid liposarcoma--assay validation and clinical experience. Diagn Mol Pathol. 2011;20: 218–224. doi:10.1097/PDM.0b013e3182107eb9.
155. van de Rijn M. FKJCAM. Desmoid fibromatosis. In: The WHO Classification of Tumours Editorial Board, editor., editor. WHO Classification of Tumours Soft Tissue and Bone Tumours. Lyon, France: 5th ed. IARC Press; 2020. pp. 93–95.
156. Amary M.F.C.., Pauwels P, Meulemans E., Roemen G.M., Islam L., Idowu B., et al. Detection of beta-catenin mutations in paraffin-embedded sporadic desmoid-type fibromatosis by mutation-specific restriction enzyme digestion (MSRED): an ancillary diagnostic tool. Am J Surg Pathol. 2007;31: 1299–1309. doi:10.1097/PAS.0b013e31802f581a.
157. Crago A.M., Chmielecki J., Rosenberg M., O’Connor R., Byrne C., Wilder F.G., et al. Near universal detection of alterations in CTNNB1 and Wnt pathway regulators in desmoid-type fibromatosis by whole-exome sequencing and genomic analysis. Genes Chromosomes Cancer. 2015;54: 606–615. doi:10.1002/gcc.22272.
158. Sturt N.J.H., Gallagher M.C., Bassett P., Philp C.R., Neale K.F., Tomlinson I.P.M., et al. Evidence for genetic predisposition to desmoid tumours in familial adenomatous polyposis independent of the germline APC mutation. Gut. 2004;53: 1832–1836. doi:10.1136/gut.2004.042705.
159. Barker N. The canonical Wnt/beta-catenin signalling pathway. Methods Mol Biol. 2008;468: 5–15. doi:10.1007/978-1-59745-249-6_1.
160. Bhattacharya B., Dilworth H.P., Iacobuzio-Donahue C., Ricci F., Weber K., Furlong M.A., et al. Nuclear beta-catenin expression distinguishes deep fibromatosis from other benign and malignant fibroblastic and myofibroblastic lesions. Am J Surg Pathol. 2005;29: 653–659. doi:10.1097/01.pas.0000157938.95785.da.
161. Carlson J.W., Fletcher C.D.M. Immunohistochemistry for beta-catenin in the differential diagnosis of spindle cell lesions: analysis of a series and review of the literature. Histopathology. 2007;51: 509–514. doi:10.1111/j.1365-2559.2007.02794.x.
162. Ng T.L., Gown A.M., Barry T.S., Cheang M.C.U., Chan A.K.W., Turbin D.A., et al. Nuclear beta-catenin in mesenchymal tumors. Mod Pathol. 2005;18: 68–74. doi:10.1038/modpathol.3800272.
163. Colombo C., Bolshakov S., Hajibashi S., Lopez-Terrada L., Wang W.-L., Rao P., et al. “Difficult to diagnose” desmoid tumours: a potential role for CTNNB1 mutational analysis. Histopathology. 2011;59: 336–340. doi:10.1111/j.1365-2559.2011.03932.x.
164. Le Guellec S., Soubeyran I., Rochaix P., Filleron T., Neuville A., Hostein I., et al. CTNNB1 mutation analysis is a useful tool for the diagnosis of desmoid tumors: a study of 260 desmoid tumors and 191 potential morphologic mimics. Mod Pathol. 2012;25: 1551–1558. doi:10.1038/modpathol.2012.115.
165. Colombo C., Miceli R., Lazar A.J., Perrone F., Pollock R.E., Le Cesne A., et al. CTNNB1 45F mutation is a molecular prognosticator of increased postoperative primary desmoid tumor recurrence: an independent, multicenter validation study. Cancer. 2013;119: 3696–3702. doi:10.1002/cncr.28271.
166. Demicco E.G., Fritchie K.J., Han A. Solitary fibrous tumour. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 104–106.
167. Chmielecki J., Crago A.M., Rosenberg M., O’Connor R., Walker S.R., Ambrogio L., et al. Whole-exome sequencing identifies a recurrent NAB2-STAT6 fusion in solitary fibrous tumors. Nat Genet. 2013;45: 131–132. doi:10.1038/ng.2522.
168. Robinson D.R., Wu Y.-M., Kalyana-Sundaram S., Cao X., Lonigro R.J., Sung Y.-S., et al. Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat Genet. 2013;45: 180–185. doi:10.1038/ng.2509.
169. Bertucci F., Bouvier-Labit C., Finetti P., Metellus P., Adelaide J., Mokhtari K., et al. Gene expression profiling of solitary fibrous tumors. PLoS One. 2013;8: e64497. doi:10.1371/journal.pone.0064497.
170. Hajdu M., Singer S., Maki R.G., Schwartz G.K., Keohan M.L., Antonescu C.R. IGF2 over-expression in solitary fibrous tumours is independent of anatomical location and is related to loss of imprinting. J Pathol. 2010;221: 300–307. doi:10.1002/path.2715.
171. Demicco E.G., Wani K., Ingram D., Wagner M., Maki R.G., Rizzo A., et al. TERT promoter mutations in solitary fibrous tumour. Histopathology. 2018;73: 843–851. doi:10.1111/his.13703.
172. Kurisaki-Arakawa A., Akaike K., Hara K., Arakawa A., Takahashi M., Mitani K., et al. A case of dedifferentiated solitary fibrous tumor in the pelvis with TP53 mutation. Virchows Arch. 2014;465: 615–621. doi:10.1007/s00428-014-1625-3.
173. Doyle L.A., Vivero M., Fletcher C.D., Mertens F., Hornick J.L. Nuclear expression of STAT6 distinguishes solitary fibrous tumor from histologic mimics. Mod Pathol. 2014;27: 390–395. doi:10.1038/modpathol.2013.164.
174. Doyle L.A., Tao D., Mariño-Enríquez A. STAT6 is amplified in a subset of dedifferentiated liposarcoma. Mod Pathol. 2014;27: 1231–1237. doi:10.1038/modpathol.2013.247.
175. H. Y. Inflammatory myofibroblastic tumour. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 109–111.
176. Bridge J.A., Kanamori M., Ma Z., Pickering D., Hill D..A, Lydiatt W., et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol. 2001;159: 411–415. doi:10.1016/S0002-9440(10)61711-7.
177. Hornick J.L., Sholl L.M., Dal Cin P., Childress M.A., Lovly C.M. Expression of ROS1 predicts ROS1 gene rearrangement in inflammatory myofibroblastic tumors. Mod Pathol. 2015;28: 732–739. doi:10.1038/modpathol.2014.165.
178. Alassiri A.H., Ali R.H., Shen Y., Lum A., Strahlendorf C., Deyell R., et al. ETV6-NTRK3 Is Expressed in a Subset of ALK-Negative Inflammatory Myofibroblastic Tumors. Am J Surg Pathol. 2016;40: 1051–1061. doi:10.1097/PAS.0000000000000677.
179. Mariño-Enríquez A., Wang W.-L., Roy A., Lopez-Terrada D., Lazar A.J.F., Fletcher C.D.M., et al. Epithelioid inflammatory myofibroblastic sarcoma: An aggressive intra-abdominal variant of inflammatory myofibroblastic tumor with nuclear membrane or perinuclear ALK. Am J Surg Pathol. 2011;35: 135–144. doi:10.1097/PAS.0b013e318200cfd5.
180. Lee J.-C., Li C.-F., Huang H.-Y., Zhu M.-J., Mariño-Enríquez A., Lee C.-T., et al. ALK oncoproteins in atypical inflammatory myofibroblastic tumours: novel RRBP1-ALK fusions in epithelioid inflammatory myofibroblastic sarcoma. J Pathol. 2017;241: 316–323. doi:10.1002/path.4836.
181. Doyle L. A. MF. Low-grade fibromyxoid sarcoma. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 127–129.
182. Mertens F., Fletcher C.D.M., Antonescu C.R., Coindre J.-M., Colecchia M., Domanski H.A., et al. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest. 2005;85: 408–415. doi:10.1038/labinvest.3700230.
183. Möller E., Hornick J.L., Magnusson L., Veerla S., Domanski H.A., Mertens F. FUS-CREB3L2/L1-positive sarcomas show a specific gene expression profile with upregulation of CD24 and FOXL1. Clin Cancer Res. 2011;17: 2646–2656. doi:10.1158/1078-0432.CCR-11-0145.
184. Lau P.P.L., Lui P.C.W., Lau G.T.C., Yau D.T.W, Cheung E.T.Y, Chan J.K.C. EWSR1-CREB3L1 gene fusion: a novel alternative molecular aberration of low-grade fibromyxoid sarcoma. Am J Surg Pathol. 2013;37: 734–738. doi:10.1097/PAS.0b013e31827560f8.
185. Doyle L.A., Möller E., Dal Cin P., Fletcher C.D.M., Mertens F., Hornick J.L. MUC4 is a highly sensitive and specific marker for low-grade fibromyxoid sarcoma. Am J Surg Pathol. 2011;35: 733–741. doi:10.1097/PAS.0b013e318210c268.
186. Doyle L. A. MF. Sclerosing epithelioid fibrosarcoma. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 130–132.
187. Arbajian E., Puls F., Magnusson L., Thway K., Fisher C., Sumathi V.P., et al. Recurrent EWSR1-CREB3L1 gene fusions in sclerosing epithelioid fibrosarcoma. Am J Surg Pathol. 2014;38: 801–808. doi:10.1097/PAS.0000000000000158.
188. Dewaele B., Libbrecht L., Levy G., Brichard B., Vanspauwen V., Sciot R., et al. A novel EWS-CREB3L3 gene fusion in a mesenteric sclerosing epithelioid fibrosarcoma. Genes Chromosomes Cancer. 2017;56: 695–699. doi:10.1002/gcc.22474.
189. Arbajian E., Puls F., Antonescu C.R., Amary F.., Sciot R, Debiec-Rychter M., et al. In-depth Genetic Analysis of Sclerosing Epithelioid Fibrosarcoma Reveals Recurrent Genomic Alterations and Potential Treatment Targets. Clin Cancer Res. 2017;23: 7426–7434. doi:10.1158/1078-0432.CCR-17-1856.
190. Doyle L.A., Wang W.-L., Dal Cin P., Lopez-Terrada D., Mertens F., Lazar A.J.F., et al. MUC4 is a sensitive and extremely useful marker for sclerosing epithelioid fibrosarcoma: association with FUS gene rearrangement. Am J Surg Pathol. 2012;36: 1444–1451. doi:10.1097/PAS.0b013e3182562bf8.
191. Guillou L., Benhattar J., Gengler C., Gallagher G., Ranchère-Vince D., Collin F., et al. Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting potential relationship to sclerosing epithelioid fibrosarcoma: a study from the French Sarcoma Group. Am J Surg Pathol. 2007;31: 1387–1402. doi:10.1097/PAS.0b013e3180321959.
192. Kao Y.-C., Lee J.-C., Zhang L., Sung Y.-S., Swanson D., Hsieh T.-H., et al. Recurrent YAP1 and KMT2A Gene Rearrangements in a Subset of MUC4-negative Sclerosing Epithelioid Fibrosarcoma. Am J Surg Pathol. 2020;44: 368–377. doi:10.1097/PAS.0000000000001382.
193. Bovée J.V.M.G., Huang S.C., Wang J. Epithelioid haemangioma. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 152–153.
194. Huang S.-C., Zhang L., Sung Y.-S., Chen C.-L., Krausz T., Dickson B.C., et al. Frequent FOS Gene Rearrangements in Epithelioid Hemangioma: A Molecular Study of 58 Cases With Morphologic Reappraisal. Am J Surg Pathol. 2015;39: 1313–1321. doi:10.1097/PAS.0000000000000469.
195. van IJzendoorn D.G.P., de Jong D., Romagosa C., Picci P., Benassi M.S., Gambarotti M., et al. Fusion events lead to truncation of FOS in epithelioid hemangioma of bone. Genes Chromosomes Cancer. 2015;54: 565–574. doi:10.1002/gcc.22269.
196. Agaram N.P., Zhang L., Cotzia P., Antonescu C.R. Expanding the Spectrum of Genetic Alterations in Pseudomyogenic Hemangioendothelioma With Recurrent Novel ACTB-FOSB Gene Fusions. Am J Surg Pathol. 2018;42: 1653–1661. doi:10.1097/PAS.0000000000001147.
197. Antonescu C.R., Chen H.-W., Zhang L., Sung Y.-S., Panicek D., Agaram N.P., et al. ZFP36-FOSB fusion defines a subset of epithelioid hemangioma with atypical features. Genes Chromosomes Cancer. 2014;53: 951–959. doi:10.1002/gcc.22206.
198. Trombetta D., Magnusson L., von Steyern F.V., Hornick J.L., Fletcher C.D.M., Mertens F. Translocation t(7;19)(q22;q13)−a recurrent chromosome aberration in pseudomyogenic hemangioendothelioma? Cancer Genet. 2011;204: 211–215. doi:10.1016/j.cancergen.2011.01.002.
199. Hung Y.P., Fletcher C..DM., Hornick J.L. FOSB is a Useful Diagnostic Marker for Pseudomyogenic Hemangioendothelioma. Am J Surg Pathol. 2017;41: 596–606. doi:10.1097/PAS.0000000000000795.
200. Sugita S., Hirano H., Kikuchi N., Kubo T., Asanuma H., Aoyama T., et al. Diagnostic utility of FOSB immunohistochemistry in pseudomyogenic hemangioendothelioma and its histological mimics. Diagn Pathol. 2016;11: 75. doi:10.1186/s13000-016-0530-2.
201. Rubin B.P., Deyrup A.T., Doyle L.A. Epithelioid haemangioendothelioma. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 172–175.
202. Errani C., Zhang L., Sung Y.S., Hajdu M., Singer S., Maki R.G., et al. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosomes Cancer. 2011;50: 644–653. doi:10.1002/gcc.20886.
203. Tanas M.R., Ma S., Jadaan F.O., Ng C.K.Y., Weigelt B., Reis-Filho J.S., et al. Mechanism of action of a WWTR1(TAZ)-CAMTA1 fusion oncoprotein. Oncogene. 2016;35: 929–938. doi:10.1038/onc.2015.148.
204. Antonescu C.R., Le Loarer F., Mosquera J.-M., Sboner A., Zhang L., Chen C.-L., et al. Novel YAP1-TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma. Genes Chromosomes Cancer. 2013;52: 775–784. doi:10.1002/gcc.22073.
205. Doyle L.A., Fletcher C.D.M., Hornick J.L. Nuclear Expression of CAMTA1 Distinguishes Epithelioid Hemangioendothelioma From Histologic Mimics. Am J Surg Pathol. 2016;40: 94–102. doi:10.1097/PAS.0000000000000511.
206. Lee SJ.., Yang W.I.., Chung W-S., Kim S.K. Epithelioid hemangioendotheliomas with TFE3 gene translocations are compossible with CAMTA1 gene rearrangements. Oncotarget. 2016;7: 7480–7488. doi:10.18632/oncotarget.7060.
207. Kohashi K. B.-L.B. The international histological classification of tumours. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 205–208.
208. Barr F.G., Galili N., Holick J., Biegel J.A., Rovera G., Emanuel B.S. Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet. 1993;3: 113–117. doi:10.1038/ng0293-113.
209. Davis R.J., D’Cruz C.M., Lovell M.A., Biegel J.A., Barr F.G. Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res. 1994;54: 2869–2872. Available: https://www.ncbi.nlm.nih.gov/pubmed/8187070.
210. Cao L., Yu Y., Bilke S., Walker R.L., Mayeenuddin L.H., Azorsa D.O., et al. Genome-wide identification of PAX3-FKHR binding sites in rhabdomyosarcoma reveals candidate target genes important for development and cancer. Cancer Res. 2010;70: 6497–6508. doi:10.1158/0008-5472.CAN-10-0582.
211. Gryder B.E., Yohe M.E., Chou H.-C., Zhang X., Marques J., Wachtel M., et al. PAX3-FOXO1 Establishes Myogenic Super Enhancers and Confers BET Bromodomain Vulnerability. Cancer Discov. 2017;7: 884–899. doi:10.1158/2159-8290.CD-16-1297.
212. Skapek S.X., Ferrari A., Gupta A.A., Lupo P.J., Butler E., Shipley J., et al. Rhabdomyosarcoma. Nat Rev Dis Primers. 2019;5: 1. doi:10.1038/s41572-018-0051-2.
213. Williamson D., Missiaglia E., de Reyniès A., Pierron G., Thuille B., Palenzuela G., et al. Fusion gene-negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J Clin Oncol. 2010;28: 2151–2158. doi:10.1200/JCO.2009.26.3814.
214. Dei Tos A.P., Hornick J.L., Miettinen M., Wanless I.R. Gastrointestinal stromal tumour. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 216–221.
215. Emile J.F., Brahimi S., Coindre J.M., Bringuier P.P., Monges G., Samb P., et al. Frequencies of KIT and PDGFRA mutations in the MolecGIST prospective population-based study differ from those of advanced GISTs. Med Oncol. 2012;29: 1765–1772. doi:10.1007/s12032-011-0074-y
216. Joensuu H., Hohenberger P., Corless C.L. Gastrointestinal stromal tumour. Lancet. 2013;382: 973–983. doi:10.1016/S0140-6736(13)60106-3.
217. Boikos S.A., Pappo A.S., Killian J.K., LaQuaglia M.P., Weldon C.B., George S., et al. Molecular Subtypes of KIT/PDGFRA Wild-Type Gastrointestinal Stromal Tumors: A Report From the National Institutes of Health Gastrointestinal Stromal Tumor Clinic. JAMA Oncol. 2016;2: 922–928. doi:10.1001/jamaoncol.2016.0256.
218. Wagner A.J., Remillard S.P., Zhang Y.-X., Doyle L.A., George S., Hornick J.L. Loss of expression of SDHA predicts SDHA mutations in gastrointestinal stromal tumors. Mod Pathol. 2013;26: 289–294. doi:10.1038/modpathol.2012.153.
219. Heinrich M.C., Jones R.L., von Mehren M., Schöffski P., Serrano C., Kang Y.-K., et al. Avapritinib in advanced PDGFRA D842V-mutant gastrointestinal stromal tumour (NAVIGATOR): a multicentre, open-label, phase 1 trial. Lancet Oncol. 2020;21: 935–946. doi:10.1016/S1470-2045(20)30269-2.
220. Nielsen G. P. C.P. Malignant peripheral nerve sheath tumour. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 254–257.
221. Lee W., Teckie S., Wiesner T., Ran L., Prieto Granada C.N., Lin M., et al. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat Genet. 2014;46: 1227–1232. doi:10.1038/ng.3095.
222. Pemov A., Hansen N.F., Sindiri S., Patidar R., Higham C.S., Dombi E., et al. Low mutation burden and frequent loss of CDKN2A/B and SMARCA2, but not PRC2, define premalignant neurofibromatosis type 1-associated atypical neurofibromas. Neuro Oncol. 2019;21: 981–992. doi:10.1093/neuonc/noz028.
223. Schaefer I.-M., Fletcher C.D., Hornick J.L. Loss of H3K27 trimethylation distinguishes malignant peripheral nerve sheath tumors from histologic mimics. Mod Pathol. 2016;29: 4–13. doi:10.1038/modpathol.2015.134.
224. Schaefer I.-M., Dong F., Garcia E.P., Fletcher C.D.M., Jo V.Y. Recurrent SMARCB1 Inactivation in Epithelioid Malignant Peripheral Nerve Sheath Tumors. Am J Surg Pathol. 2019;43: 835–843. doi:10.1097/PAS.0000000000001242.
225. Suumeijer A.J.H., Ladanyi M., Nielsen T.O. Synovial sarcoma. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 290–293.
226. Amary M.F.C., Berisha F., Bernardi F.D.C., Herbert A., James M., Reis-Filho J.S., et al. Detection of SS18-SSX fusion transcripts in formalin-fixed paraffin-embedded neoplasms: analysis of conventional RT-PCR, qRT-PCR and dual color FISH as diagnostic tools for synovial sarcoma. Mod Pathol. 2007;20: 482–496. doi:10.1038/modpathol.3800761.
227. Perret R., Velasco V., Le Guellec S., Coindre J..-M, Le Loarer F. The SS18-SSX Antibody Has Perfect Specificity for the SS18-SSX Fusion Protein: A Validation Study of 609 Neoplasms Including 2 Unclassified Tumors With SS18-Non-SSX Fusions. Am J Surg Pathol. 2021;45: 582–584. doi:10.1097/PAS.0000000000001628.
228. Jones K.B., Barrott J.J., Xie M., Haldar M., Jin H., Zhu J.-F., et al. The impact of chromosomal translocation locus and fusion oncogene coding sequence in synovial sarcomagenesis. Oncogene. 2016;35: 5021–5032. doi:10.1038/onc.2016.38.
229. Kang H.-J., Park J.H., Chen W., Kang S.I., Moroz K., Ladanyi M., et al. EWS-WT1 oncoprotein activates neuronal reprogramming factor ASCL1 and promotes neural differentiation. Cancer Res. 2014;74: 4526–4535. doi:10.1158/0008-5472.CAN-13-3663.
230. Barnoud R., Sabourin J.C., Pasquier D., Ranchère D., Bailly C., Terrier-Lacombe M.J., et al. Immunohistochemical expression of WT1 by desmoplastic small round cell tumor: a comparative study with other small round cell tumors. Am J Surg Pathol. 2000;24: 830–836. doi:10.1097/00000478-200006000-00008.
231. Schoolmeester J.K., Folpe A.L., Nair A.A., Halling K., Sutton B.C., Landers E., et al. EWSR1-WT1 gene fusions in neoplasms other than desmoplastic small round cell tumor: a report of three unusual tumors involving the female genital tract and review of the literature. Mod Pathol. 2021;34: 1912–1920. doi:10.1038/s41379-021-00843-5.
232. Le Loarer F. Nielsen T. O. OYDCP. Epithelioid sarcoma. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 294–296.
233. Hornick J.L., Dal Cin P., Fletcher C.D.M. Loss of INI1 expression is characteristic of both conventional and proximal-type epithelioid sarcoma. Am J Surg Pathol. 2009;33: 542–550. doi:10.1097/PAS.0b013e3181882c54.
234. Stockman D.L., Hornick J.L., Deavers M.T., Lev D.C., Lazar A.J., Wang W.-L. ERG and FLI1 protein expression in epithelioid sarcoma. Mod Pathol. 2014;27: 496–501. doi:10.1038/modpathol.2013.161.
235. Kohashi K., Yamada Y., Hotokebuchi Y., Yamamoto H., Taguchi T., Iwamoto Y., et al. ERG and SALL4 expressions in SMARCB1/INI1-deficient tumors: a useful tool for distinguishing epithelioid sarcoma from malignant rhabdoid tumor. Hum Pathol. 2015;46: 225–230. doi:10.1016/j.humpath.2014.10.010.
236. Bode-Lesniewska B., Debiec-Rychter M., Tavora F. Intimal sarcoma. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 315–317.
237. Bode-Lesniewska B., Zhao J., Speel E.J., Biraima A.M., Turina M., Komminoth P., et al. Gains of 12q13-14 and overexpression of mdm2 are frequent findings in intimal sarcomas of the pulmonary artery. Virchows Arch. 2001;438: 57–65. doi:10.1007/s004280000313.
238. Koelsche C., Benhamida J.K., Kommoss F.K.F., Stichel D., Jones D.T.W., Pfister S.M, et al. Intimal sarcomas and undifferentiated cardiac sarcomas carry mutually exclusive MDM2, MDM4, and CDK6 amplifications and share a common DNA methylation signature. Mod Pathol. 2021;34: 2122–2129. doi:10.1038/s41379-021-00874-y.
239. de Álava E. Lessnick S. L. Stamenkovic I. Ewing sarcoma. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 323–325.
240. Brohl A.S., Solomon D.A., Chang W., Wang J., Song Y., Sindiri S., et al. The genomic landscape of the Ewing Sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet. 2014;10: e1004475. doi:10.1371/journal.pgen.1004475.
241. Wang W.-L., Patel N.R., Caragea M., Hogendoorn P.C.W., López-Terrada D., Hornick J.L., et al. Expression of ERG, an Ets family transcription factor, identifies ERG-rearranged Ewing sarcoma. Mod Pathol. 2012;25: 1378–1383. doi:10.1038/modpathol.2012.97.
242. Chen S., Deniz K., Sung Y.-S., Zhang L., Dry S., Antonescu C.R. Ewing sarcoma with ERG gene rearrangements: A molecular study focusing on the prevalence of FUS-ERG and common pitfalls in detecting EWSR1-ERG fusions by FISH. Genes Chromosomes Cancer. 2016;55: 340–349. doi:10.1002/gcc.22336.
243. Le Loarer F., Szuhai K., Tirode F. Round cell sarcoma with EWSR1–non-ETS fusion. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 326–329.
244. Bridge J.A., Sumegi J., Druta M., Bui M.M., Henderson-Jackson E., Linos K., et al. Clinical, pathological, and genomic features of EWSR1-PATZ1 fusion sarcoma. Mod Pathol. 2019;32: 1593–1604. doi:10.1038/s41379-019-0301-1.
245. Toki S., Wakai S., Sekimizu M., Mori T., Ichikawa H., Kawai A., et al. PAX7 immunohistochemical evaluation of Ewing sarcoma and other small round cell tumours. Histopathology. 2018;73: 645–652. doi:10.1111/his.13689.
246. Yoshida K.-I., Machado I., Motoi T., Parafioriti A., Lacambra M., Ichikawa H., et al. NKX3-1 Is a Useful Immunohistochemical Marker of EWSR1-NFATC2 Sarcoma and Mesenchymal Chondrosarcoma. Am J Surg Pathol. 2020;44: 719–728. doi:10.1097/PAS.0000000000001441.
247. Chougule A., Taylor M.S., Nardi V., Chebib I., Cote G.M., Choy E., et al. Spindle and Round Cell Sarcoma With EWSR1-PATZ1 Gene Fusion: A Sarcoma With Polyphenotypic Differentiation. Am J Surg Pathol. 2019;43: 220–228. doi:10.1097/PAS.0000000000001183.
248. Kawamura-Saito M., Yamazaki Y., Kaneko K., Kawaguchi N., Kanda H., Mukai H., et al. Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4;19)(q35;q13) translocation. Hum Mol Genet. 2006;15: 2125–2137. doi:10.1093/hmg/ddl136.
249. Smith S.C., Buehler D., Choi E.-Y.K., McHugh J.B., Rubin B.P., Billings S.D., et al. CIC-DUX sarcomas demonstrate frequent MYC amplification and ETS-family transcription factor expression. Mod Pathol. 2015;28: 57–68. doi:10.1038/modpathol.2014.83.
250. Siegele B., Roberts J., Black J.O., Rudzinski E., Vargas S.O., Galambos C. DUX4 Immunohistochemistry Is a Highly Sensitive and Specific Marker for CIC-DUX4 Fusion-positive Round Cell Tumor. Am J Surg Pathol. 2017;41: 423–429. doi:10.1097/PAS.0000000000000772..
251. Hung Y.P., Fletcher C.D., Hornick J.L. Evaluation of ETV4 and WT1 expression in CIC-rearranged sarcomas and histologic mimics. Mod Pathol. 2016;29: 1324–1334. doi:10.1038/modpathol.2016.140.
252. Le Guellec S., Velasco V., Pérot G., Watson S., Tirode F., Coindre J.-M. ETV4 is a useful marker for the diagnosis of CIC-rearranged undifferentiated round-cell sarcomas: a study of 127 cases including mimicking lesions. Mod Pathol. 2016;29: 1523–1531. doi:10.1038/modpathol.2016.155.
253. Le Loarer F., Pissaloux D., Watson S., Godfraind C., Galmiche-Rolland L., Silva K., et al. Clinicopathologic Features of CIC-NUTM1 Sarcomas, a New Molecular Variant of the Family of CIC-Fused Sarcomas. Am J Surg Pathol. 2019;43: 268–276. doi:10.1097/PAS.0000000000001187.
254. Huang S.-C., Zhang L., Sung Y.-S., Chen C.-L., Kao Y.-C., Agaram N.P., et al. Recurrent CIC Gene Abnormalities in Angiosarcomas: A Molecular Study of 120 Cases With Concurrent Investigation of PLCG1, KDR, MYC, and FLT4 Gene Alterations. Am J Surg Pathol. 2016;40: 645–655. doi:10.1097/PAS.0000000000000582.
255. Sturm D., Orr B.A., Toprak U.H., Hovestadt V., Jones D.T.W., Capper D., et al. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell. 2016;164: 1060–1072. doi:10.1016/j.cell.2016.01.015.
256. Kao Y.-C., Sung Y.-S., Zhang L., Huang S.-C., Argani P., Chung C.T., et al. Recurrent BCOR Internal Tandem Duplication and YWHAE-NUTM2B Fusions in Soft Tissue Undifferentiated Round Cell Sarcoma of Infancy: Overlapping Genetic Features With Clear Cell Sarcoma of Kidney. Am J Surg Pathol. 2016;40: 1009–1020. doi:10.1097/PAS.0000000000000629.
257. Roy A., Kumar V., Zorman B., Fang E., Haines K.M., Doddapaneni H., et al. Recurrent internal tandem duplications of BCOR in clear cell sarcoma of the kidney. Nat Commun. 2015;6: 8891. doi:10.1038/ncomms9891.
258. Specht K., Zhang L., Sung Y.-S., Nucci M., Dry S., Vaiyapuri S., et al. Novel BCOR-MAML3 and ZC3H7B-BCOR Gene Fusions in Undifferentiated Small Blue Round Cell Sarcomas. Am J Surg Pathol. 2016;40: 433–442. doi:10.1097/PAS.0000000000000591.
259. Kao Y.-C., Sung Y.-S., Zhang L., Jungbluth A.A., Huang S.-C., Argani P., et al. BCOR Overexpression Is a Highly Sensitive Marker in Round Cell Sarcomas With BCOR Genetic Abnormalities. Am J Surg Pathol. 2016;40: 1670–1678. doi:10.1097/PAS.0000000000000697.
260. Kao Y.-C., Owosho A.A., Sung Y.-S., Zhang L., Fujisawa Y., Lee J.-C., et al. BCOR-CCNB3 Fusion Positive Sarcomas: A Clinicopathologic and Molecular Analysis of 36 Cases With Comparison to Morphologic Spectrum and Clinical Behavior of Other Round Cell Sarcomas. Am J Surg Pathol. 2018;42: 604–615. doi:10.1097/PAS.0000000000000965.
261. Salgado C.M., Zin A., Garrido M., Kletskaya I., DeVito R., Reyes-Múgica M., et al. Pediatric Soft Tissue Tumors With BCOR ITD Express EGFR but Not OLIG2. Pediatr Dev Pathol. 2020;23: 424–430. doi:10.1177/1093526620945528.
262. Armstrong S.M., Demicco E.G. What’s new in fibroblastic tumors? Virchows Arch. 2020;476: 41–55. doi:10.1007/s00428-019-02682-x.
263. Kao Y.-C., Flucke U., Eijkelenboom A., Zhang L., Sung Y.-S., Suurmeijer A.J.H., et al. Novel EWSR1-SMAD3 Gene Fusions in a Group of Acral Fibroblastic Spindle Cell Neoplasms. Am J Surg Pathol. 2018;42: 522–528. doi:10.1097/PAS.0000000000001002.
264. Suurmeijer A. J. H. ACR. NTRK-rearranged spindle cell neoplasm (emerging). In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 287–289.
265. Agaram N.P., Zhang L., Sung Y.-S., Chen C.-L., Chung C.T., Antonescu C.R., et al. Recurrent NTRK1 Gene Fusions Define a Novel Subset of Locally Aggressive Lipofibromatosis-like Neural Tumors. Am J Surg Pathol. 2016;40: 1407–1416. doi:10.1097/PAS.0000000000000675.
266. Yamazaki F., Nakatani F., Asano N., Wakai S., Sekimizu M., Mitani S., et al. Novel NTRK3 Fusions in Fibrosarcomas of Adults. Am J Surg Pathol. 2019;43: 523–530. doi:10.1097/PAS.0000000000001194.
267. Cocco E., Scaltriti M., Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 2018;15: 731–747. doi:10.1038/s41571-018-0113-0.
268. Hechtman J.F., Benayed R., Hyman D.M., Drilon A., Zehir A., Frosina D., et al. Pan-Trk Immunohistochemistry Is an Efficient and Reliable Screen for the Detection of NTRK Fusions. Am J Surg Pathol. 2017;41: 1547–1551. doi:10.1097/PAS.0000000000000911.
269. Antonescu C.R. Emerging soft tissue tumors with kinase fusions: An overview of the recent literature with an emphasis on diagnostic criteria. Genes Chromosomes Cancer. 2020;59: 437–444. doi:10.1002/gcc.22846.
270. Nemtsova M.V., Bure I.V. Targeting of the SWI/SNF chromatin remodeling complex in cancer therapy. Adv Mol Oncol. 2023;10: 8–17. doi:10.17650/2313-805x-2023-10-1-8-17.
271. Schaefer I.-M., Hornick J.L. SWI/SNF complex-deficient soft tissue neoplasms: An update. Semin Diagn Pathol. 2021;38: 222–231. doi:10.1053/j.semdp.2020.05.005.
272. Nambirajan A., Jain D. Recent updates in thoracic SMARCA4-deficient undifferentiated tumor. Semin Diagn Pathol. 2021;38: 83–89. doi:10.1053/j.semdp.2021.06.001.
273. Le Loarer F. Rekhtman N. YABJMJD. Thoracic SMARCA4-deficient undifferentiated tumor. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 111–114.
274. Jelinic P., Mueller J.J., Olvera N., Dao F., Scott S.N., Shah R., et al. Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nat Genet. 2014;46: 424–426. doi:10.1038/ng.2922.
275. Lin D.I., Allen J.M., Hecht J.L., Killian J.K., Ngo N.T., Edgerly C., et al. SMARCA4 inactivation defines a subset of undifferentiated uterine sarcomas with rhabdoid and small cell features and germline mutation association. Mod Pathol. 2019;32: 1675–1687. doi:10.1038/s41379-019-0303-z.
276. Agaimy A., Jain D., Uddin N., Rooper L.M., Bishop J.A. SMARCA4-deficient Sinonasal Carcinoma: A Series of 10 Cases Expanding the Genetic Spectrum of SWI/SNF-driven Sinonasal Malignancies. Am J Surg Pathol. 2020;44: 703–710. doi:10.1097/PAS.0000000000001428.
277. Foulkes W.D., Priest J.R., Duchaine T.F. DICER1: mutations, microRNAs and mechanisms. Nat Rev Cancer. 2014;14: 662–672. doi:10.1038/nrc3802.
278. McCluggage W.G., Foulkes W.D. DICER1-associated sarcomas: towards a unified nomenclature. Mod Pathol. 2021;34: 1226–1228. doi:10.1038/s41379-020-0602-4.
279. Warren M., Hiemenz M.C., Schmidt R., Shows J., Cotter J., Toll S., et al. Expanding the spectrum of dicer1-associated sarcomas. Mod Pathol. 2020;33: 164–174. doi:10.1038/s41379-019-0366-x.
280. McCluggage W.G., Foulkes W.D. DICER1-associated sarcomas at different sites exhibit morphological overlap arguing for a unified nomenclature. Virchows Arch. 2021;479: 431–433. doi:10.1007/s00428-021-03087-5.
281. Difilippantonio S. et al. Distinct domains in Nbs1 regulate irradiation-induced checkpoints and apoptosis //The Journal of experimental medicine. 2007. Т. 204. №. 5. С. 1003.