101. Белозеров Ю.М., Брегель Л.В., Субботин В.М. Синдром Неймегена у детей. 2018. Available: https://elibrary.ru/item.asp?id=35596194.
102. Каган М.Ю., Шулакова Н.С., Гумирова Р.А., Злодеева Е.А., Резник Н.В. Синдром Ниймеген (клиническое наблюдение). Педиатрическая фармакология. 2012;9: 102–105. Available: https://cyberleninka.ru/article/n/sindrom-niymegen-klinicheskoe-nablyudenie.
103. Antonescu C.R. The role of genetic testing in soft tissue sarcoma. Histopathology. 2006;48: 13–21. doi:10.1111/j.1365-2559.2005.02285.x.
104. Bridge J.A. The role of cytogenetics and molecular diagnostics in the diagnosis of soft-tissue tumors. Mod Pathol. 2014;27 Suppl 1: S80–97. doi:10.1038/modpathol.2013.179.
105. Mertens F., Antonescu C.R., Hohenberger P., Ladanyi M., Modena P., D’Incalci M., et al. Translocation-related sarcomas. Semin Oncol. 2009;36: 312–323. doi:10.1053/j.seminoncol.2009.06.004.
106. Bridge J.A., Cushman-Vokoun A.M. Molecular diagnostics of soft tissue tumors. Arch Pathol Lab Med. 2011;135: 588–601. doi:10.5858/2010-0594-RAIR.1.
107. Wang W.-L., Lazar A. Applications of molecular testing to differential diagnosis. Practical Soft Tissue Pathology: a Diagnostic Approach. 2019. doi:10.1016/B978-0-323-49714-5.00018-1.
108. Gibault L., Pérot G., Chibon F., Bonnin S., Lagarde P., Terrier P., et al. New insights in sarcoma oncogenesis: a comprehensive analysis of a large series of 160 soft tissue sarcomas with complex genomics. J Pathol. 2011;223: 64–71. doi:10.1002/path.2787.
109. Tanas M.R., Goldblum J.R. Fluorescence in situ hybridization in the diagnosis of soft tissue neoplasms: a review. Adv Anat Pathol. 2009;16: 383–391. doi:10.1097/PAP.0b013e3181bb6b86.
110. Oda Y., Yamamoto H., Kohashi K., Yamada Y., Iura K., Ishii T., et al. Soft tissue sarcomas: From a morphological to a molecular biological approach. Pathol Int. 2017;67: 435–446. doi:10.1111/pin.12565.
111. Groisberg R., Roszik J., Conley A., Patel S.R., Subbiah V. The Role of Next-Generation Sequencing in Sarcomas: Evolution From Light Microscope to Molecular Microscope. Curr Oncol Rep. 2017;19: 78. doi:10.1007/s11912-017-0641-2.
112. ESMO/European Sarcoma Network Working Group. Soft tissue and visceral sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25 Suppl 3: iii102–12. doi:10.1093/annonc/mdu254.
113. Hornick J.L. Novel uses of immunohistochemistry in the diagnosis and classification of soft tissue tumors. Mod Pathol. 2014;27 Suppl 1: S47–63. doi:10.1038/modpathol.2013.177.
114. Fletcher C.D.M. Tumors of soft tissue. 3rd ed. In: M. FCD, editor. Diagnostic Histopathology of Tumors 5th ed. 3rd ed. Philadelphia, PA, USA: Elsevier; 2021. pp. 1919–1984. Available: https://books.google.at/books?id=V9FsBQAAQBAJ.
115. Choi J.H., Ro J.Y. The Recent Advances in Molecular Diagnosis of Soft Tissue Tumors. Int J Mol Sci. 2023;24. doi:10.3390/ijms24065934.
116. Billing S. D. UDN. Spindle cell lipoma and pleomorphic lipoma. In: The WHO Classification of Tumours Editorial Board, editor., editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC; 2020. pp. 29–30. Available: https://books.google.com/books/about/Soft_Tissue_and_Bone_Tumours.html?hl=&id=kaR9zQEACAAJ.
117. Fletcher C.D., Akerman M., Dal Cin P., de Wever I., Mandahl N., Mertens F., et al. Correlation between clinicopathological features and karyotype in lipomatous tumors. A report of 178 cases from the Chromosomes and Morphology (CHAMP) Collaborative Study Group. Am J Pathol. 1996;148: 623–630. Available: https://www.ncbi.nlm.nih.gov/pubmed/8579124.
118. Chen B.J., Mariño-Enríquez A., Fletcher C.D.M., Hornick J.L. Loss of retinoblastoma protein expression in spindle cell/pleomorphic lipomas and cytogenetically related tumors: an immunohistochemical study with diagnostic implications. Am J Surg Pathol. 2012;36: 1119–1128. doi:10.1097/PAS.0b013e31825d532d.
119. Dahlén A., Debiec-Rychter M., Pedeutour F., Domanski H.A., Höglund M., Bauer H.C.F., et al. Clustering of deletions on chromosome 13 in benign and low-malignant lipomatous tumors. Int J Cancer. 2003;103: 616–623. doi:10.1002/ijc.10864.
120. Magro G., Righi A., Casorzo L., Antonietta T., Salvatorelli L., Kacerovská D., et al. Mammary and vaginal myofibroblastomas are genetically related lesions: fluorescence in situ hybridization analysis shows deletion of 13q14 region. Hum Pathol. 2012;43: 1887–1893. doi:10.1016/j.humpath.2012.01.015.
121. Howitt B.E., Fletcher C.D.M. Mammary-type Myofibroblastoma: Clinicopathologic Characterization in a Series of 143 Cases. Am J Surg Pathol. 2016;40: 361–367. doi:10.1097/PAS.0000000000000540.
122. Flucke U., van Krieken J.H.J.M., Mentzel T. Cellular angiofibroma: analysis of 25 cases emphasizing its relationship to spindle cell lipoma and mammary-type myofibroblastoma. Mod Pathol. 2011;24: 82–89. doi:10.1038/modpathol.2010.170.
123. D. Creytens A.M.-E. Atypical spindle cell/pleomorphic lipomatous tumour. In: The WHO Classification of Tumours Editorial Board, editor., editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC; 2020. pp. 34–35. Available: https://play.google.com/store/books/details?id=kaR9zQEACAAJ.
124. Mariño-Enriquez A., Nascimento A.F., Ligon A.H., Liang C., Fletcher C.D.M. Atypical Spindle Cell Lipomatous Tumor: Clinicopathologic Characterization of 232 Cases Demonstrating a Morphologic Spectrum. Am J Surg Pathol. 2017;41: 234–244. doi:10.1097/PAS.0000000000000770.
125. Creytens D., Mentzel T., Ferdinande L., Lecoutere E., van Gorp J., Atanesyan L., et al. “Atypical” Pleomorphic Lipomatous Tumor: A Clinicopathologic, Immunohistochemical and Molecular Study of 21 Cases, Emphasizing its Relationship to Atypical Spindle Cell Lipomatous Tumor and Suggesting a Morphologic Spectrum (Atypical Spindle Cell/Pleomorphic Lipomatous Tumor). Am J Surg Pathol. 2017;41: 1443–1455. doi:10.1097/PAS.0000000000000936.
126. Bahadır B., Behzatoğlu K., Hacıhasanoğlu E., Koca S.B., Sığırcı B.B., Tokat F. Atypical spindle cell/pleomorphic lipomatous tumor: A clinicopathologic, immunohistochemical, and molecular study of 20 cases. Pathol Int. 2018;68: 550–556. doi:10.1111/pin.12719.
127. Mentzel T., Palmedo G., Kuhnen C. Well-differentiated spindle cell liposarcoma (’atypical spindle cell lipomatous tumor') does not belong to the spectrum of atypical lipomatous tumor but has a close relationship to spindle cell lipoma: clinicopathologic, immunohistochemical, and molecular analysis of six cases. Mod Pathol. 2010;23: 729–736. doi:10.1038/modpathol.2010.66.
128. Thway K. What’s new in adipocytic neoplasia? Histopathology. 2022;80: 76–97. doi:10.1111/his.14548.
129. Demicco E.G. Molecular updates in adipocytic neoplasms. Semin Diagn Pathol. 2019;36: 85–94. doi:10.1053/j.semdp.2019.02.003.
130. Creytens D. M.-E.A. Atypical spindle cell/pleomorphic lipomatous tumour. In: The WHO Classification of Tumours Editorial Board, editor., editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 34–35.
131. Italiano A., Bianchini L., Gjernes E., Keslair F., Ranchere-Vince D., Dumollard J.-M., et al. Clinical and biological significance of CDK4 amplification in well-differentiated and dedifferentiated liposarcomas. Clin Cancer Res. 2009;15: 5696–5703. doi:10.1158/1078-0432.CCR-08-3185.
132. Bovée J.V.M.G., Huang S.C., Wang J. Epithelioid haemangioma. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 152–153.
133. Makise N., Sekimizu M., Kubo T., Wakai S., Hiraoka N., Komiyama M., et al. Clarifying the Distinction Between Malignant Peripheral Nerve Sheath Tumor and Dedifferentiated Liposarcoma: A Critical Reappraisal of the Diagnostic Utility of MDM2 and H3K27me3 Status. Am J Surg Pathol. 2018;42: 656–664. doi:10.1097/PAS.0000000000001014.
134. Schoolmeester J.K., Sciallis A.P., Greipp P.T., Hodge J.C., Dal Cin P., Keeney G.L., et al. Analysis of MDM2 Amplification in 43 Endometrial Stromal Tumors: A Potential Diagnostic Pitfall. Int J Gynecol Pathol. 2015;34: 576–583. doi:10.1097/PGP.0000000000000187.
135. He X., Pang Z., Zhang X., Lan T., Chen H., Chen M., et al. Consistent amplification of FRS2 and MDM2 in low-grade osteosarcoma: A genetic study of 22 cases with clinicopathologic analysis. Am J Surg Pathol. 2018;42: 1143–1155. doi:10.1097/PAS.0000000000001125.
136. Wunder J.S., Eppert K., Burrow S.R., Gokgoz N., Bell R.S., Andrulis I.L. Co-amplification and overexpression of CDK4, SAS and MDM2 occurs frequently in human parosteal osteosarcomas. Oncogene. 1999;18: 783–788. doi:10.1038/sj.onc.1202346.
137. Neuville A., Collin F., Bruneval P., Parrens M., Thivolet F., Gomez-Brouchet A., et al. Intimal sarcoma is the most frequent primary cardiac sarcoma: clinicopathologic and molecular retrospective analysis of 100 primary cardiac sarcomas. Am J Surg Pathol. 2014;38: 461–469. doi:10.1097/PAS.0000000000000184.
138. Zhang H., Erickson-Johnson M., Wang X., Oliveira J.L., Nascimento A.G., Sim F.H., et al. Molecular testing for lipomatous tumors: critical analysis and test recommendations based on the analysis of 405 extremity-based tumors. Am J Surg Pathol. 2010;34: 1304–1311. doi:10.1097/PAS.0b013e3181e92d0b.
139. Dei Tos A.P., Marino-Enriquez A., Pedeutour F. Dedifferentiated liposarcoma. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 39–41.
140. Mariño-Enríquez A., Fletcher C.D.M., Dal Cin P., Hornick J.L. Dedifferentiated liposarcoma with “homologous” lipoblastic (pleomorphic liposarcoma-like) differentiation: clinicopathologic and molecular analysis of a series suggesting revised diagnostic criteria. Am J Surg Pathol. 2010;34: 1122–1131. doi:10.1097/PAS.0b013e3181e5dc49.
141. Saâda-Bouzid E., Burel-Vandenbos F., Ranchère-Vince D., Birtwisle-Peyrottes I., Chetaille B., Bouvier C., et al. Prognostic value of HMGA2, CDK4, and JUN amplification in well-differentiated and dedifferentiated liposarcomas. Mod Pathol. 2015;28: 1404–1414. doi:10.1038/modpathol.2015.96.
142. Thway K., Flora R., Shah C., Olmos D., Fisher C. Diagnostic utility of p16, CDK4, and MDM2 as an immunohistochemical panel in distinguishing well-differentiated and dedifferentiated liposarcomas from other adipocytic tumors. Am J Surg Pathol. 2012;36: 462–469. doi:10.1097/PAS.0b013e3182417330.
143. Sirvent N., Coindre J.-M., Maire G., Hostein I., Keslair F., Guillou L., et al. Detection of MDM2-CDK4 amplification by fluorescence in situ hybridization in 200 paraffin-embedded tumor samples: utility in diagnosing adipocytic lesions and comparison with immunohistochemistry and real-time PCR. Am J Surg Pathol. 2007;31: 1476–1489. doi:10.1097/PAS.0b013e3180581fff.
144. Le Guellec S., Chibon F., Ouali M., Perot G., Decouvelaere A.-V., Robin Y.-M., et al. Are peripheral purely undifferentiated pleomorphic sarcomas with MDM2 amplification dedifferentiated liposarcomas? Am J Surg Pathol. 2014;38: 293–304. doi:10.1097/PAS.0000000000000131.
145. Thway K. NTO. Myxoid liposarcoma. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 42–44.
146. Powers M.P., Wang W.-L., Hernandez V.S., Patel K.S., Lev D.C., Lazar A.J., et al. Detection of myxoid liposarcoma-associated FUS-DDIT3 rearrangement variants including a newly identified breakpoint using an optimized RT-PCR assay. Mod Pathol. 2010;23: 1307–1315. doi:10.1038/modpathol.2010.118.
147. Han J., Murthy R., Wood B., Song B., Wang S., Sun B., et al. ER stress signalling through eIF2α and CHOP, but not IRE1α, attenuates adipogenesis in mice. Diabetologia. 2013;56: 911–924. doi:10.1007/s00125-012-2809-5.
148. Brenner S., Bercovich Z., Feiler Y., Keshet R., Kahana C. Dual Regulatory Role of Polyamines in Adipogenesis. J Biol Chem. 2015;290: 27384–27392. doi:10.1074/jbc.M115.686980.
149. Pérez-Mancera P.A., Bermejo-Rodríguez C., Sánchez-Martín M., Abollo-Jiménez F., Pintado B., Sánchez-García I. FUS-DDIT3 prevents the development of adipocytic precursors in liposarcoma by repressing PPARgamma and C/EBPalpha and activating eIF4E. PLoS One. 2008;3: e2569. doi:10.1371/journal.pone.0002569.
150. Koelsche C., Renner M., Hartmann W., Brandt R., Lehner B., Waldburger N., et al. TERT promoter hotspot mutations are recurrent in myxoid liposarcomas but rare in other soft tissue sarcoma entities. J Exp Clin Cancer Res. 2014;33: 33. doi:10.1186/1756-9966-33-33.
151. Trautmann M., Cyra M., Isfort I., Jeiler B., Krüger A., Grünewald I., et al. Phosphatidylinositol-3-kinase (PI3K)/Akt Signaling is Functionally Essential in Myxoid Liposarcoma. Mol Cancer Ther. 2019;18: 834–844. doi:10.1158/1535-7163.MCT-18-0763.
152. Baranov E., Black M.A., Fletcher C.D.M., Charville G.W., Hornick J.L. Nuclear expression of DDIT3 distinguishes high-grade myxoid liposarcoma from other round cell sarcomas. Mod Pathol. 2021;34: 1367–1372. doi:10.1038/s41379-021-00782-1.
153. Italiano A., Di Mauro I., Rapp J., Pierron G., Auger N., Alberti L., et al. Clinical effect of molecular methods in sarcoma diagnosis (GENSARC): a prospective, multicentre, observational study. Lancet Oncol. 2016;17: 532–538. doi:10.1016/S1470-2045(15)00583-5.
154. Narendra S., Valente A., Tull J., Zhang S. DDIT3 gene break-apart as a molecular marker for diagnosis of myxoid liposarcoma--assay validation and clinical experience. Diagn Mol Pathol. 2011;20: 218–224. doi:10.1097/PDM.0b013e3182107eb9.
155. van de Rijn M. FKJCAM. Desmoid fibromatosis. In: The WHO Classification of Tumours Editorial Board, editor., editor. WHO Classification of Tumours Soft Tissue and Bone Tumours. Lyon, France: 5th ed. IARC Press; 2020. pp. 93–95.
156. Amary M.F.C.., Pauwels P, Meulemans E., Roemen G.M., Islam L., Idowu B., et al. Detection of beta-catenin mutations in paraffin-embedded sporadic desmoid-type fibromatosis by mutation-specific restriction enzyme digestion (MSRED): an ancillary diagnostic tool. Am J Surg Pathol. 2007;31: 1299–1309. doi:10.1097/PAS.0b013e31802f581a.
157. Crago A.M., Chmielecki J., Rosenberg M., O’Connor R., Byrne C., Wilder F.G., et al. Near universal detection of alterations in CTNNB1 and Wnt pathway regulators in desmoid-type fibromatosis by whole-exome sequencing and genomic analysis. Genes Chromosomes Cancer. 2015;54: 606–615. doi:10.1002/gcc.22272.
158. Sturt N.J.H., Gallagher M.C., Bassett P., Philp C.R., Neale K.F., Tomlinson I.P.M., et al. Evidence for genetic predisposition to desmoid tumours in familial adenomatous polyposis independent of the germline APC mutation. Gut. 2004;53: 1832–1836. doi:10.1136/gut.2004.042705.
159. Barker N. The canonical Wnt/beta-catenin signalling pathway. Methods Mol Biol. 2008;468: 5–15. doi:10.1007/978-1-59745-249-6_1.
160. Bhattacharya B., Dilworth H.P., Iacobuzio-Donahue C., Ricci F., Weber K., Furlong M.A., et al. Nuclear beta-catenin expression distinguishes deep fibromatosis from other benign and malignant fibroblastic and myofibroblastic lesions. Am J Surg Pathol. 2005;29: 653–659. doi:10.1097/01.pas.0000157938.95785.da.
161. Carlson J.W., Fletcher C.D.M. Immunohistochemistry for beta-catenin in the differential diagnosis of spindle cell lesions: analysis of a series and review of the literature. Histopathology. 2007;51: 509–514. doi:10.1111/j.1365-2559.2007.02794.x.
162. Ng T.L., Gown A.M., Barry T.S., Cheang M.C.U., Chan A.K.W., Turbin D.A., et al. Nuclear beta-catenin in mesenchymal tumors. Mod Pathol. 2005;18: 68–74. doi:10.1038/modpathol.3800272.
163. Colombo C., Bolshakov S., Hajibashi S., Lopez-Terrada L., Wang W.-L., Rao P., et al. “Difficult to diagnose” desmoid tumours: a potential role for CTNNB1 mutational analysis. Histopathology. 2011;59: 336–340. doi:10.1111/j.1365-2559.2011.03932.x.
164. Le Guellec S., Soubeyran I., Rochaix P., Filleron T., Neuville A., Hostein I., et al. CTNNB1 mutation analysis is a useful tool for the diagnosis of desmoid tumors: a study of 260 desmoid tumors and 191 potential morphologic mimics. Mod Pathol. 2012;25: 1551–1558. doi:10.1038/modpathol.2012.115.
165. Colombo C., Miceli R., Lazar A.J., Perrone F., Pollock R.E., Le Cesne A., et al. CTNNB1 45F mutation is a molecular prognosticator of increased postoperative primary desmoid tumor recurrence: an independent, multicenter validation study. Cancer. 2013;119: 3696–3702. doi:10.1002/cncr.28271.
166. Demicco E.G., Fritchie K.J., Han A. Solitary fibrous tumour. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 104–106.
167. Chmielecki J., Crago A.M., Rosenberg M., O’Connor R., Walker S.R., Ambrogio L., et al. Whole-exome sequencing identifies a recurrent NAB2-STAT6 fusion in solitary fibrous tumors. Nat Genet. 2013;45: 131–132. doi:10.1038/ng.2522.
168. Robinson D.R., Wu Y.-M., Kalyana-Sundaram S., Cao X., Lonigro R.J., Sung Y.-S., et al. Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat Genet. 2013;45: 180–185. doi:10.1038/ng.2509.
169. Bertucci F., Bouvier-Labit C., Finetti P., Metellus P., Adelaide J., Mokhtari K., et al. Gene expression profiling of solitary fibrous tumors. PLoS One. 2013;8: e64497. doi:10.1371/journal.pone.0064497.
170. Hajdu M., Singer S., Maki R.G., Schwartz G.K., Keohan M.L., Antonescu C.R. IGF2 over-expression in solitary fibrous tumours is independent of anatomical location and is related to loss of imprinting. J Pathol. 2010;221: 300–307. doi:10.1002/path.2715.
171. Demicco E.G., Wani K., Ingram D., Wagner M., Maki R.G., Rizzo A., et al. TERT promoter mutations in solitary fibrous tumour. Histopathology. 2018;73: 843–851. doi:10.1111/his.13703.
172. Kurisaki-Arakawa A., Akaike K., Hara K., Arakawa A., Takahashi M., Mitani K., et al. A case of dedifferentiated solitary fibrous tumor in the pelvis with TP53 mutation. Virchows Arch. 2014;465: 615–621. doi:10.1007/s00428-014-1625-3.
173. Doyle L.A., Vivero M., Fletcher C.D., Mertens F., Hornick J.L. Nuclear expression of STAT6 distinguishes solitary fibrous tumor from histologic mimics. Mod Pathol. 2014;27: 390–395. doi:10.1038/modpathol.2013.164.
174. Doyle L.A., Tao D., Mariño-Enríquez A. STAT6 is amplified in a subset of dedifferentiated liposarcoma. Mod Pathol. 2014;27: 1231–1237. doi:10.1038/modpathol.2013.247.
175. H. Y. Inflammatory myofibroblastic tumour. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 109–111.
176. Bridge J.A., Kanamori M., Ma Z., Pickering D., Hill D..A, Lydiatt W., et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol. 2001;159: 411–415. doi:10.1016/S0002-9440(10)61711-7.
177. Hornick J.L., Sholl L.M., Dal Cin P., Childress M.A., Lovly C.M. Expression of ROS1 predicts ROS1 gene rearrangement in inflammatory myofibroblastic tumors. Mod Pathol. 2015;28: 732–739. doi:10.1038/modpathol.2014.165.
178. Alassiri A.H., Ali R.H., Shen Y., Lum A., Strahlendorf C., Deyell R., et al. ETV6-NTRK3 Is Expressed in a Subset of ALK-Negative Inflammatory Myofibroblastic Tumors. Am J Surg Pathol. 2016;40: 1051–1061. doi:10.1097/PAS.0000000000000677.
179. Mariño-Enríquez A., Wang W.-L., Roy A., Lopez-Terrada D., Lazar A.J.F., Fletcher C.D.M., et al. Epithelioid inflammatory myofibroblastic sarcoma: An aggressive intra-abdominal variant of inflammatory myofibroblastic tumor with nuclear membrane or perinuclear ALK. Am J Surg Pathol. 2011;35: 135–144. doi:10.1097/PAS.0b013e318200cfd5.
180. Lee J.-C., Li C.-F., Huang H.-Y., Zhu M.-J., Mariño-Enríquez A., Lee C.-T., et al. ALK oncoproteins in atypical inflammatory myofibroblastic tumours: novel RRBP1-ALK fusions in epithelioid inflammatory myofibroblastic sarcoma. J Pathol. 2017;241: 316–323. doi:10.1002/path.4836.
181. Doyle L. A. MF. Low-grade fibromyxoid sarcoma. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 127–129.
182. Mertens F., Fletcher C.D.M., Antonescu C.R., Coindre J.-M., Colecchia M., Domanski H.A., et al. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest. 2005;85: 408–415. doi:10.1038/labinvest.3700230.
183. Möller E., Hornick J.L., Magnusson L., Veerla S., Domanski H.A., Mertens F. FUS-CREB3L2/L1-positive sarcomas show a specific gene expression profile with upregulation of CD24 and FOXL1. Clin Cancer Res. 2011;17: 2646–2656. doi:10.1158/1078-0432.CCR-11-0145.
184. Lau P.P.L., Lui P.C.W., Lau G.T.C., Yau D.T.W, Cheung E.T.Y, Chan J.K.C. EWSR1-CREB3L1 gene fusion: a novel alternative molecular aberration of low-grade fibromyxoid sarcoma. Am J Surg Pathol. 2013;37: 734–738. doi:10.1097/PAS.0b013e31827560f8.
185. Doyle L.A., Möller E., Dal Cin P., Fletcher C.D.M., Mertens F., Hornick J.L. MUC4 is a highly sensitive and specific marker for low-grade fibromyxoid sarcoma. Am J Surg Pathol. 2011;35: 733–741. doi:10.1097/PAS.0b013e318210c268.
186. Doyle L. A. MF. Sclerosing epithelioid fibrosarcoma. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 130–132.
187. Arbajian E., Puls F., Magnusson L., Thway K., Fisher C., Sumathi V.P., et al. Recurrent EWSR1-CREB3L1 gene fusions in sclerosing epithelioid fibrosarcoma. Am J Surg Pathol. 2014;38: 801–808. doi:10.1097/PAS.0000000000000158.
188. Dewaele B., Libbrecht L., Levy G., Brichard B., Vanspauwen V., Sciot R., et al. A novel EWS-CREB3L3 gene fusion in a mesenteric sclerosing epithelioid fibrosarcoma. Genes Chromosomes Cancer. 2017;56: 695–699. doi:10.1002/gcc.22474.
189. Arbajian E., Puls F., Antonescu C.R., Amary F.., Sciot R, Debiec-Rychter M., et al. In-depth Genetic Analysis of Sclerosing Epithelioid Fibrosarcoma Reveals Recurrent Genomic Alterations and Potential Treatment Targets. Clin Cancer Res. 2017;23: 7426–7434. doi:10.1158/1078-0432.CCR-17-1856.
190. Doyle L.A., Wang W.-L., Dal Cin P., Lopez-Terrada D., Mertens F., Lazar A.J.F., et al. MUC4 is a sensitive and extremely useful marker for sclerosing epithelioid fibrosarcoma: association with FUS gene rearrangement. Am J Surg Pathol. 2012;36: 1444–1451. doi:10.1097/PAS.0b013e3182562bf8.
191. Guillou L., Benhattar J., Gengler C., Gallagher G., Ranchère-Vince D., Collin F., et al. Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting potential relationship to sclerosing epithelioid fibrosarcoma: a study from the French Sarcoma Group. Am J Surg Pathol. 2007;31: 1387–1402. doi:10.1097/PAS.0b013e3180321959.
192. Kao Y.-C., Lee J.-C., Zhang L., Sung Y.-S., Swanson D., Hsieh T.-H., et al. Recurrent YAP1 and KMT2A Gene Rearrangements in a Subset of MUC4-negative Sclerosing Epithelioid Fibrosarcoma. Am J Surg Pathol. 2020;44: 368–377. doi:10.1097/PAS.0000000000001382.
193. Bovée J.V.M.G., Huang S.C., Wang J. Epithelioid haemangioma. In: The WHO Classification of Tumours Editorial Board, editor, editor. WHO Classification of Tumours Soft Tissue and Bone Tumours 5th ed. Lyon, France: IARC Press; 2020. pp. 152–153.
194. Huang S.-C., Zhang L., Sung Y.-S., Chen C.-L., Krausz T., Dickson B.C., et al. Frequent FOS Gene Rearrangements in Epithelioid Hemangioma: A Molecular Study of 58 Cases With Morphologic Reappraisal. Am J Surg Pathol. 2015;39: 1313–1321. doi:10.1097/PAS.0000000000000469.
195. van IJzendoorn D.G.P., de Jong D., Romagosa C., Picci P., Benassi M.S., Gambarotti M., et al. Fusion events lead to truncation of FOS in epithelioid hemangioma of bone. Genes Chromosomes Cancer. 2015;54: 565–574. doi:10.1002/gcc.22269.
196. Agaram N.P., Zhang L., Cotzia P., Antonescu C.R. Expanding the Spectrum of Genetic Alterations in Pseudomyogenic Hemangioendothelioma With Recurrent Novel ACTB-FOSB Gene Fusions. Am J Surg Pathol. 2018;42: 1653–1661. doi:10.1097/PAS.0000000000001147.
197. Antonescu C.R., Chen H.-W., Zhang L., Sung Y.-S., Panicek D., Agaram N.P., et al. ZFP36-FOSB fusion defines a subset of epithelioid hemangioma with atypical features. Genes Chromosomes Cancer. 2014;53: 951–959. doi:10.1002/gcc.22206.
198. Trombetta D., Magnusson L., von Steyern F.V., Hornick J.L., Fletcher C.D.M., Mertens F. Translocation t(7;19)(q22;q13)−a recurrent chromosome aberration in pseudomyogenic hemangioendothelioma? Cancer Genet. 2011;204: 211–215. doi:10.1016/j.cancergen.2011.01.002.
199. Hung Y.P., Fletcher C..DM., Hornick J.L. FOSB is a Useful Diagnostic Marker for Pseudomyogenic Hemangioendothelioma. Am J Surg Pathol. 2017;41: 596–606. doi:10.1097/PAS.0000000000000795.
200. Sugita S., Hirano H., Kikuchi N., Kubo T., Asanuma H., Aoyama T., et al. Diagnostic utility of FOSB immunohistochemistry in pseudomyogenic hemangioendothelioma and its histological mimics. Diagn Pathol. 2016;11: 75. doi:10.1186/s13000-016-0530-2.